【題目】三角形中,頂角等于的等腰三角形稱為黃金三角形,如圖,在中,已知:,且

在圖中,用尺規(guī)作的垂直平分線交,并連接(保留作圖痕跡,不寫作法);

是不是黃金三角形?如果是,請給出證明;如果不是,請說明理由;

設(shè),試求的值;

如圖,在中,已知,且,請直接寫出的值.

【答案】(1)詳見解析;(2)詳見解析;(3);(4)

【解析】

(1)根據(jù)作線段垂直平分線的方法作圖即可;(2)分別求得△BCD各個角的度數(shù),根據(jù)黃金三角形的定義即可解答;(3)通過證明△BDC∽△ABC,根據(jù)相似三角形的性質(zhì)求解即可;(4)延長,使,連接,證明,可得根據(jù)(3)可得,由此即可求得的值.

如圖所示;

是黃金三角形.

證明如下:的垂直平分線上,

,

,,

,

,

,

是黃金三角形.

設(shè),

知,

,,

,

,即,

整理,得,

解得

因為均為正數(shù),所以

理由:延長,使,連接

,,

,

,

,

知,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠ACB=90°,過B,C兩點的⊙OAC于點D,交AB于點E,連接EO并延長交⊙O于點F.連接BF,CF.若∠EDC=135°,CF=,AE2+BE2的值為 ( )

A. 8 B. 12 C. 16 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標系中,ABC的頂點A(0,1),B(3,2),C(1,4)均在正方形網(wǎng)格的格點上.

1)直接寫出點ABC關(guān)于x軸對稱的點A1,B1,C1的坐標;.

2)在圖中作出ABC關(guān)于y軸對稱圖形A2B2C2

3)計算ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=6,BC=10,AB的垂直平分線分別交BC、AB于點D、E.

(1)△ACD的周長;

(2)∠C=25°,求∠CAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】日,中超十一輪,重慶力帆將主場迎戰(zhàn)河北華夏幸福,重慶鐵血巴渝球迷協(xié)會將繼續(xù)組織鐵桿球迷到現(xiàn)場為重慶力帆加油助威.鐵血巴渝球迷協(xié)會計劃購買甲、乙兩種球票共張,并且甲票的數(shù)量不少于乙票的

鐵血巴渝球迷協(xié)會至少購買多少張甲票;

鐵血巴渝球迷協(xié)會從售票處得知,售票處將給予球迷協(xié)會一定的優(yōu)惠,本場比賽球票以統(tǒng)一價格元出售給該協(xié)會,因此協(xié)會決定購買的票數(shù)將在原計劃的基礎(chǔ)上增加,購票后總共用去元,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在建筑物AB上,掛著35 m長的宣傳條幅AE,從另一建筑物CD的頂部D處看條幅頂端A處,仰角為45°,看條幅底端E處,俯角為37°.求兩建筑物間的距離BC

(參考數(shù)據(jù):sin37°0.6,cos37°0.8, tan37°0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果三角形有一邊上的中線長恰好等于這邊的長,那么這個三角形叫“恰等三角形”,這條中線叫“恰等中線”.

(直角三角形中的“恰等中線”)

(1)如圖1,在△ABC中,∠C=90°,ACBC=2,AM為△ABC的中線.求證:AM是“恰等中線”.

(等腰三角形中的“恰等中線”)

2)已知,等腰△ABC是“恰等三角形”,ABAC20,求底邊BC的平方.

(一般三角形中的“恰等中線”)

3)如圖2,若AM是△ABC的“恰等中線”,則BC2,AB2,AC2之間的數(shù)量關(guān)系為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】Rt△ABC中,∠ACB=90°,AC:BC=4:3,O是BC上一點,⊙O交AB于點D,交BC延長線于點E.連接ED,交AC于點G,且AG=AD.

(1)求證:AB與⊙O相切;

(2)設(shè)⊙O與AC的延長線交于點F,連接EF,若EF∥AB,且EF5,求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中

1)寫出ABC的頂點坐標,并求出ABC的面積;

2)畫出ABC關(guān)于y軸對稱的圖形A1B1C1并寫出各頂點的坐標。

查看答案和解析>>

同步練習(xí)冊答案