【題目】如圖,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于點(diǎn)D,AD=AB,點(diǎn)E為AC邊上的中點(diǎn),點(diǎn)P為BC上一動點(diǎn),則PA+PE的最小值為_____.
【答案】4
【解析】
先作出點(diǎn)A的對稱點(diǎn)A':延長AD至A',使AD=A'D,連接A'E,交BC于P,此時PA+PE的值最小,就是A'E的長,證明CD=A'E=4即可.
∵AB=AC,BC=8,AD⊥BC,
∴BD=CD=4,
∵AD=AB,
∴∠B=30°,
∴∠BAD=∠CAD=60°,
延長AD至A',使AD=A'D,連接A'E,交BC于P,此時PA+PE的值最小,就是A'E的長,
∵AD=AB,AA′=2AD,
∴AA'=AB=AC,∠CAA'=60°,
∴△AA'C是等邊三角形,
∵E是AC的中點(diǎn),
∴A'E⊥AC,
∴A'E=CD=4,即PA+PE的最小值是4,
故答案為:4.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分10分)在某市組織的大型商業(yè)演出活動中,對團(tuán)體購買門票實(shí)行優(yōu)惠,決定在原定票價基礎(chǔ)上每張降價80元,這樣按原定票價需花費(fèi)6000元購買的門票張數(shù),現(xiàn)在只花費(fèi)了4800元.
(1)求每張門票原定的票價;
(2)根據(jù)實(shí)際情況,活動組織單位決定對于個人購票也采取優(yōu)惠措施,原定票價經(jīng)過連續(xù)二次降價后降為324元,求平均每次降價的百分率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABD、∠ACD的角平分線交于點(diǎn)P,若∠A = 50°,∠D =10°,則∠P的度數(shù)為( )
A.15°B.20°C.25°D.30°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛準(zhǔn)備用一段長 44 米的籬笆圍成三角形,用于養(yǎng)雞。已知一條邊長 x 米,第二條邊是第一條邊的 3 倍多 6 米。
(1)若能圍成一個等腰三角形,求三邊長
(2)若第一邊長最短,寫出 x 的取值范圍 。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面內(nèi)有一等腰Rt△ABC,∠ACB=90°,點(diǎn)A在直線l上.過點(diǎn)C作CE⊥1于點(diǎn)E,過點(diǎn)B作BF⊥l于點(diǎn)F,測量得CE=3,BF=2,則AF的長為( 。
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A(α,0)、B(b,0),點(diǎn)C在y軸上,且由|a+4|+(b-2)2=0.
(1)若S△ABC=6,求C點(diǎn)的坐標(biāo);
(2)將C向右平移,使OC平分∠ACB,點(diǎn)P是x軸上B點(diǎn)右邊的一動點(diǎn),PQ⊥OC于Q點(diǎn).當(dāng)∠ABC-∠BAC=60°時,求∠APQ的度數(shù);
(3)在(2)的條件下,將線段AC平移,使其經(jīng)過P點(diǎn)得線段EF,作∠APE的角平分線交OC的延長線于點(diǎn)M.當(dāng)P點(diǎn)在x軸上運(yùn)動時,求∠M-∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】冬季降至,貧困山區(qū)惡劣的地理環(huán)境加之其落后的交通條件,無疑將使得山區(qū)在漫長冬季里物資更加匱乏,“讓冬天不冷讓愛心永駐”,重慶市公益組織心驛家號召全市人民為貧困山區(qū)的孩子們捐贈過冬衣物,本次捐贈共收集了11600件棉衣、7500件羽絨服及防寒服若干,自愿者將所有衣物分成若干A、B、C類組合,由自愿者們分別送往交通極其不便利的各個山區(qū),一個A類組合含有60件棉衣,80件防寒服和50件羽絨服;一個B類組合含有40件棉衣,40件防寒服;一個C類組合含有40件棉衣,60件防寒服,50件羽絨服;求防寒服一共捐贈了_____件.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,AD是∠BAC的平分線,E、F分別為AB、AC上的點(diǎn),且∠EDF+∠EAF=180°,求證DE=DF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com