【題目】某校羽毛球隊(duì)需要購(gòu)買(mǎi)6支羽毛球拍和x盒羽毛球,羽毛球拍市場(chǎng)價(jià)為200/支,羽毛球?yàn)?/span>30/盒.甲商場(chǎng)優(yōu)惠方案為:所有商品9折.乙商場(chǎng)優(yōu)惠方案為:買(mǎi)1支羽毛球拍送1盒羽毛球,其余原價(jià)銷(xiāo)售.

當(dāng)大于時(shí),分別用含的代數(shù)式表示在甲商場(chǎng)和乙商場(chǎng)購(gòu)買(mǎi)所有物品的費(fèi)用.

當(dāng)時(shí),請(qǐng)你通過(guò)計(jì)算說(shuō)明選擇哪個(gè)商場(chǎng)購(gòu)買(mǎi)比較省錢(qián).

【答案】(1) 甲商場(chǎng)所需費(fèi)用:元,乙商場(chǎng)所需費(fèi)用元;(2) 選擇乙商場(chǎng)購(gòu)買(mǎi)比較省錢(qián)

【解析】

1)在甲商場(chǎng)購(gòu)買(mǎi)所有物品的費(fèi)用為6支羽毛球拍費(fèi)用和x盒羽毛球的費(fèi)用和的9折;在乙商場(chǎng)購(gòu)買(mǎi)所有物品的費(fèi)用為6支羽毛球拍費(fèi)用和(x6)盒羽毛球的費(fèi)用和;

2)把x=10分別代入(1)中所列的兩個(gè)代數(shù)式即可.

1)甲商場(chǎng)所需費(fèi)用:0.9×6×200+0.9×30x=1080+27x)元;

乙商場(chǎng)所需費(fèi)用:6×200+30x6=1020+30x)元;

2)當(dāng)x=10時(shí),甲商場(chǎng)所需費(fèi)用:1080+27x=1080+27×10=1350(元)

乙商場(chǎng)所需費(fèi)用:1020+30x=1020+30×10=1320(元).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,AC=6,AB=,∠BAC=30°,∠BAC的平分線交BC于點(diǎn)DE、F分別是線段ADAB上的動(dòng)點(diǎn),則BE+EF的最小值是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四邊形ABCD中,EF分別是AB、AD邊上的點(diǎn),DECF交于點(diǎn)G

(1)如圖①,若四邊形ABCD是矩形,且DE⊥CF,求證;

(2)如圖②,若四邊形ABCD是平行四邊形,試探究:當(dāng)∠B與∠EGC滿足什么關(guān)系時(shí),使得成立?并證明你的結(jié)論;

3)如圖③,若BA=BC=4,DA=DC=6,∠BAD90°,DECF,請(qǐng)直接寫(xiě)出的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩校的學(xué)生人數(shù)基本相同,為了解這兩所學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平,在某次測(cè)試中,從兩校各隨機(jī)抽取了30名學(xué)生的測(cè)試成績(jī)進(jìn)行調(diào)查分析,其中甲校已經(jīng)繪制好了條形統(tǒng)計(jì)圖,乙校只完成了一部分.

1)請(qǐng)根據(jù)乙校的數(shù)據(jù)補(bǔ)全條形統(tǒng)計(jì)圖:

2)兩組樣本數(shù)據(jù)的平均數(shù).中位數(shù)眾數(shù)如下表所示,寫(xiě)出的值:

平均數(shù)

中位數(shù)

眾數(shù)

甲校

乙校

3)兩所學(xué)校的同學(xué)都想依據(jù)抽樣的數(shù)據(jù)說(shuō)明自己學(xué)校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好些,請(qǐng)為他們各寫(xiě)出條可以使用的理由;甲校:____.乙校:________.

4)綜合來(lái)看,可以推斷出________校學(xué)生的數(shù)學(xué)學(xué)業(yè)水平更好些,理由為_(kāi)_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知矩形ABCD的頂點(diǎn)AD分別落在x軸、y軸,OD=2OA=6,ADAB=31.則點(diǎn)B的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,正方形OABC的頂點(diǎn)O與坐標(biāo)原點(diǎn)重合,點(diǎn)C的坐標(biāo)為(0,3),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)D、M分別在邊AB、OA上,且AD=2DB,AM=2MO,一次函數(shù)y=kx+b的圖象過(guò)點(diǎn)D和M,反比例函數(shù)y=的圖象經(jīng)過(guò)點(diǎn)D,與BC的交點(diǎn)為N

(1)求反比例函數(shù)和一次函數(shù)的表達(dá)式;

(2)若點(diǎn)P在直線DM上,且使△OMP的面積等于2,求點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)y=ax2+bx﹣4的圖象開(kāi)口向上,與x軸的交點(diǎn)為(4,0)、(﹣2,0),則當(dāng)x1=﹣1,x2=2時(shí),對(duì)應(yīng)的函數(shù)值y1y2的大小關(guān)系為( 。

A. y1>y2 B. y1=y2 C. y1<y2 D. 不確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對(duì)角線BD平分ABCPBD上一點(diǎn),過(guò)點(diǎn)PPM^ADPN^CD,垂足分別為MN。

1)求證:ADB=CDB;

2)若ADC=90°,求證:四邊形MPND是正方形。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法:|a|=﹣b,|b|b,則ab0若﹣a不是正數(shù),則a為非負(fù)數(shù);③|a2|=(﹣a2;,則;平面內(nèi)n條直線兩兩相交,最多個(gè)交點(diǎn).其中正確的結(jié)論有( 。

A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案