如圖,在平面直角坐標系xOy中,一次函數(shù)y=kx+b的圖象與反比例函數(shù)數(shù)學公式的圖象交于A(2,3)、B(-3,n)兩點.
(1)求一次函數(shù)和反比例函數(shù)的解析式;
(2)若P是y軸上一點,且滿足△PAB的面積是5,直接寫出OP的長.

解:(1)∵反比例函數(shù)y=的圖象經(jīng)過點A(2,3),
∴m=6.
∴反比例函數(shù)的解析式是y=,
Q點A(-3,n)在反比例函數(shù)y=的圖象上,
∴n=-2,
∴B(-3,-2),
∵一次函數(shù)y=kx+b的圖象經(jīng)過A(2,3)、B(-3,-2)兩點,
,
解得:
∴一次函數(shù)的解析式是y=x+1;

(2)對于一次函數(shù)y=x+1,令x=0求出y=1,即C(0,1),OC=1,
根據(jù)題意得:S△ABP=PC×2+PC×3=5,
解得:PC=2,
則OP=OC+CP=1+2=3或OP=CP-OC=2-1=1.
分析:(1)將A坐標代入反比例函數(shù)解析式中求出m的值,即可確定出反比例函數(shù)解析式;設直線AB解析式為y=kx+b,將B坐標代入反比例解析式中求出n的值,確定出B坐標,將A與B坐標代入一次函數(shù)解析式中求出k與b的值,即可確定出一次函數(shù)解析式;
(2)如圖所示,對于一次函數(shù)解析式,令x=0求出y的值,確定出C坐標,得到OC的長,三角形ABP面積由三角形ACP面積與三角形BCP面積之和求出,由已知的面積求出PC的長,即可求出OP的長.
點評:此題考查了一次函數(shù)與反比例函數(shù)的交點問題,涉及的知識有:待定系數(shù)法求函數(shù)解析式,坐標與圖形性質,以及三角形的面積求法,熟練掌握待定系數(shù)法是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點P為x軸上的一個動點,但是點P不與點0、點A重合.連接CP,D點是線段AB上一點,連接PD.
(1)求點B的坐標;
(2)當∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標xoy中,以坐標原點O為圓心,3為半徑畫圓,從此圓內(包括邊界)的所有整數(shù)點(橫、縱坐標均為整數(shù))中任意選取一個點,其橫、縱坐標之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,等腰梯形ABCD的下底在x軸上,且B點坐標為(4,0),D點坐標為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標xOy中,已知點A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點,PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在平面直角坐標中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點P從點O出發(fā),在梯形OABC的邊上運動,路徑為O→A→B→C,到達點C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當△OCP是等腰三角形時,請寫出點P的坐標(不要求過程,只需寫出結果).

查看答案和解析>>

同步練習冊答案