【題目】如圖,拋物線與直線相交于,兩點,且拋物線經(jīng)過點

1)求拋物線的解析式.

2)點是拋物線上的一個動點(不與點重合),過點作直線軸于點,交直線于點.當時,求點坐標;

3)如圖所示,設(shè)拋物線與軸交于點,在拋物線的第一象限內(nèi),是否存在一點,使得四邊形的面積最大?若存在,請求出點的坐標;若不存在,說明理由.

【答案】1;(2點坐標為(2,9)或(6-7);(3)存在點Q)使得四邊形OFQC的面積最大,見解析.

【解析】

1)先由點在直線上求出點的坐標,再利用待定系數(shù)法求解可得;

2)可設(shè)出點坐標,則可表示出、的坐標,從而可表示出的長,由條件可知到關(guān)于點坐標的方程,則可求得點坐標;

3)作軸于點,設(shè),知,,根據(jù)四邊形的面積建立關(guān)于的函數(shù),再利用二次函數(shù)的性質(zhì)求解可得.

解:(1在直線上,

,,

、、三點坐標代入拋物線解析式可得,解得,

拋物線解析式為;

2)設(shè),則,

,

,

時,解得,但當時,重合不合題意,舍去,

;

時,解得,但當時,重合不合題意,舍去,

;

綜上可知點坐標為

3)存在這樣的點,使得四邊形的面積最大.

如圖,過點軸于點

設(shè),,

,,,

四邊形的面積

時,四邊形的面積取得最大值,最大值為,此時點的坐標為,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,∠BAD=C=90°,AB=AD,AEBC,垂足為E,若線段AE=3,則四邊形ABCD的面積是_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點E在⊙O上,C為的中點,過點C作直線CD⊥AE于D,連接AC,BC.

(1試判斷直線CD與⊙O的位置關(guān)系,并說明理由;

(2若AD=2,AC=,求AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在等邊△ABC中,點E、D分別是AC,BC邊的中點,點PAB邊上的一個動點,連接PE,PD,PC,DE,設(shè),圖1中某條線段的長為y,若表示yx的函數(shù)關(guān)系的圖象大致如圖2所示,則這條線段可能是圖1中的( )(提示:過點E、CDAB的垂線)

A.線段PDB.線段PCC.線段DED.線段PE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市一水果銷售公司,需將一批鮮桃運往某地,有汽車、火車、運輸工具可供選擇,兩種運輸工具的主要參考數(shù)據(jù)如下:

運輸工具

途中平均速度(單位:千米/時)

途中平均費用(單位:元/千米)

裝卸時間(單位:小時)

裝卸費用(單位:元)

汽車

75

8

2

1000

火車

100

6

4

2000

若這批水果在運輸過程中(含裝卸時間)的損耗為150/時,設(shè)運輸路程為x)千米,用汽車運輸所需總費用為y1元,用火車運輸所需總費用為y2.

1)分別求出y1、y2x的關(guān)系式;

2)那么你認為采用哪種運輸工具比較好?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線y=ax2+bx+c(a<0)經(jīng)過點(-1,0),且滿足4a+2b+c>0.以下結(jié)論(1)a+b>0;(2)a+c>0;(3)-a+b+c>0;(4)b2-2ac>5a2其中正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋物線y= ax2+bx+c開口向下,并且經(jīng)過A(0,1)和M(2,-3)兩點。

(1)若拋物線的對稱軸為直線x= -1,求此拋物線的解析式;

(2)如果拋物線的對稱軸在y軸的左側(cè),試求a的取值范圍;

(3)如果拋物線與x軸交于B、C兩點,且∠BAC=90,求此時a的值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】黃岡某地杜鵑節(jié)期間,某公司70名職工組團前往參觀欣賞,旅游景點規(guī)定:門票每人60元,無優(yōu)惠;上山游玩可坐景點觀光車,觀光車有四座和十一座車,四座車每輛60元,十一座車每人10.公司職工正好坐滿每輛車且總費用不超過5000元,問公司租用的四座車和十一座車各多少輛?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在學校的社會實踐活動中,一批學生協(xié)助搬運初一、二兩個年級的圖書,初一年級需要搬運的圖書數(shù)量是初二年級需要搬運的圖書數(shù)量的兩倍.上午全部學生在初一年級搬運,下午一半的學生仍然留在初一年級(上下午的搬運時間相等)搬運,到放學時剛好把初一年級的圖書搬運完.下午另一半的學生去初二年級搬運圖書,到放學時還剩下一小部分未搬運,最后由三個學生再用一整天的時間剛好搬運完.如果這批學生每人每天搬運的效率是相同的,則這批學生共有人數(shù)為______.

查看答案和解析>>

同步練習冊答案