我國著名數(shù)學(xué)家華羅庚曾說過:“數(shù)缺形時少直觀,形少數(shù)時難入微;數(shù)形結(jié)合百般好,隔離分家萬事休”.?dāng)?shù)學(xué)中,數(shù)和形是兩個最主要的研究對象,它們之間有著十分密切的聯(lián)系,在一定條件下,數(shù)和形之間可以相互轉(zhuǎn)化,相互滲透.
數(shù)形結(jié)合的基本思想,就是在研究問題的過程中,注意把數(shù)和形結(jié)合起來考察,斟酌問題的具體情形,把圖形性質(zhì)的問題轉(zhuǎn)化為數(shù)量關(guān)系的問題,或者把數(shù)量關(guān)系的問題轉(zhuǎn)化為圖形性質(zhì)的問題,使復(fù)雜問題簡單化,抽象問題具體化,化難為易,獲得簡便易行的成功方案.
例如,求1+2+3+4+…+n的值,其中n是正整數(shù).
對于這個求和問題,如果采用純代數(shù)的方法(首尾兩頭加),問題雖然可以解決,但在求和過程中,需對n的奇偶性進行討論.
如果采用數(shù)形結(jié)合的方法,即用圖形的性質(zhì)來說明數(shù)量關(guān)系的事實,那就非常的直觀.現(xiàn)利用圖形的性質(zhì)來求1+2+3+4+…+n 的值,方案如下:如圖,斜線左邊的三角形圖案
是由上到下每層依次分別為1,2,3,…,n個小圓圈排列組成的.而組成整個三角形小圓圈的個數(shù)恰為所求式子1+2+3+4+…+n的值.為求式子的值,現(xiàn)把左邊三角形倒放于斜線右邊,與原三角形組成一個平行四邊形.此時,組成平行四邊形的小圓圈共有n行,每行有(n+1)個小圓圈,所以組成平行四邊形小圓圈的總個數(shù)為n(n+1)個,因此,組成一個三角形小圓圈的個數(shù)為,即.
(1)
仿照上述數(shù)形結(jié)合的思想方法,設(shè)計相關(guān)圖形,求
1+
3+
5+
7+
…+
(2n-
1)的值,其中
n 是正整數(shù).
(要求:畫出圖形,并利用圖形做必要的推理說明
)
(2)
試設(shè)計另外一種圖形,求
1+
3+
5+
7+
…+
(2n-
1)的值,其中
n是正整數(shù).
(要求:畫出圖形,并利用圖形做必要的推理說明
)