【題目】如圖,甲轉(zhuǎn)盤被分成3個面積相等的扇形,乙轉(zhuǎn)盤被分成2個半圓,每一個扇形或半圓都標(biāo)有相應(yīng)的數(shù)字.同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,設(shè)甲轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為x,乙轉(zhuǎn)盤中指針?biāo)竻^(qū)域內(nèi)的數(shù)字為y(當(dāng)指針指在邊界線上時,重轉(zhuǎn)一次,直到指針指向一個區(qū)域為止).
(1)請你用畫樹狀圖或列表格的方法,列出所有等可能情況,并求出點(x,y)落在坐標(biāo)軸上的概率;
(2)直接寫出點(x,y)落在以坐標(biāo)原點為圓心,2為半徑的圓內(nèi)的概率.
【答案】(1)樹狀圖見解析, (2)
【解析】
(1)首先利用畫樹狀圖的方法,求得所有點的等可能的情況,然后再求得點(x,y)落在坐標(biāo)軸上的情況,求其比值即可求得答案;
(2)求得點(x,y)落在以坐標(biāo)原點為圓心,2為半徑的圓內(nèi)所有情況,即可求得答案.
解:(1)列樹狀圖如下,
由樹狀圖得:一共有6種等可能的情況,點(x,y)落在坐標(biāo)軸上的有4種,
∴ P(點(x,y)在坐標(biāo)軸上)=;
(2)∵ 點(x,y)落在以坐標(biāo)原點為圓心,2為半徑的圓內(nèi)的有(0,0),(0,﹣1),
∴ P(點(x,y)在圓內(nèi))=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對喜愛看課外書、體育活動、看電視、社會實踐四個方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計.現(xiàn)從該校隨機(jī)抽取名學(xué)生作為樣本,采用問卷調(diào)查的方法收集數(shù)據(jù)(參與問卷調(diào)查的每名學(xué)生只能選擇其中一項).并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計圖.由圖中提供的信息,解答下列問題:
(1)求n的值;
(2)若該校學(xué)生共有1200人,試估計該校喜愛看電視的學(xué)生人數(shù);
(3)若調(diào)查到喜愛體育活動的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名學(xué)生,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,∠A和∠B的平分線交于點P,過點P作PE⊥AB交AB于點E.若BC=5,AC=12,則AE等于______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC與BD交于點O,AD=1,DC=,矩形OGHM的邊OM經(jīng)過點D,邊OG交CD于點P,將矩形OGHM繞點O逆時針方向旋轉(zhuǎn)α(0°<α<60°),OM′交AD于點F,OG′交CD于點E,設(shè)DF=y,EP=x,則y與x的關(guān)系為( )
A.y=xB.y=xC.y=xD.y=x
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①是一個小箱子ABCDE放在桌面MN上的示意圖,BC這部分可彎曲,在彎曲時形成一段圓弧,設(shè)圓弧所在圓的圓心為O,線段AB,CD均與圓弧相切,點B,C分別為切點,小箱子蓋面CD與桌面MN平行,此時CD距離桌面14cm,已知AB的長10cm,CD的長為25.2cm.
(1)如圖①,求弧BC的長度(結(jié)果保留π).
(2)如圖②,若小箱子ABCDE打開后弧BC所對的圓心角度數(shù)為60°,求小箱子頂端D到桌面MN的距離DH(結(jié)果保留一位小數(shù)).(參考數(shù)據(jù):≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠AOB=90°,OM是∠AOB的平分線,將一個直角三角板的直角頂點P放在射線OM上,OP=2,移動直角三角板,兩邊分別交射線OA,OB與點C,D.
(1)如圖,當(dāng)點C、D都不與點O重合時,求證:PC=PD;
(2)聯(lián)結(jié)CD,交OM于E,設(shè)CD=x,PE=y,求y與x之間的函數(shù)關(guān)系式;
(3)如圖,若三角板的一條直角邊與射線OB交于點D,另一直角邊與直線OA,直線OB分別交于點C,F,且△PDF與△OCD相似,求OD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市平時每天都將一定數(shù)量的白糖和紅糖進(jìn)行包裝以便出售,已知每天包裝白糖的質(zhì)量是包裝紅糖質(zhì)量的倍,且每天包裝白糖和紅糖的質(zhì)量之和為45千克.
(1)求平均每天包裝白糖和紅糖的質(zhì)量各是多少千克?
(2)為迎接今年6月25日的“端午節(jié)”,該超市決定在前20天增加每天包裝白糖和紅糖的質(zhì)量,二者的包裝質(zhì)量與天數(shù)的變化情況如圖所示,節(jié)日后又恢復(fù)到原來每天的包裝質(zhì)量.直接寫出在這20天內(nèi)每天包裝白糖和紅糖的質(zhì)量隨天數(shù)變化的函數(shù)關(guān)系式,并寫出自變量的取值范圍.
(3)假設(shè)該超市每天都會將當(dāng)天包裝后的白糖和紅糖全部售出,已知白糖的成本價為每千克3.9元,紅糖的成本每千克5.5元,二者包裝費用平均每千克均為0.5元,白糖售價為每千克6元,紅糖售價為每千克8元,那么在這20天中有哪幾天銷售白糖和紅糖的利潤之和大于120元?[總利潤=售價額﹣成本﹣包裝費用].
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校在宣傳“民族團(tuán)結(jié)”活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計圖.
請結(jié)合圖中所給信息,解答下列問題:
(1)本次調(diào)查的學(xué)生共有_____人;
(2)補(bǔ)全條形統(tǒng)計圖;
(3)該校共有1200名學(xué)生,請估計選擇“唱歌”的學(xué)生有多少人?
(4)七年一班在最喜歡“器樂”的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂隊,請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC,點D是BC上一動點,連接AD,過點A作AE⊥AD,并且始終保持AE=AD,連接CE.
(1)求證:△ABD≌△ACE;
(2)若AF平分∠DAE交BC于F,探究線段BD,DF,FC之間的數(shù)量關(guān)系,并證明;
(3)在(2)的條件下,若BD=3,CF=4,求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com