如圖,設(shè)計(jì)建造一條道路,路基的橫斷面為梯形ABCD,設(shè)路基高為h,兩側(cè)的坡角分別為α、β.已知h=2米,α=45°,tanβ=,CD=10米.求路基底部AB的寬.

【答案】分析:分別過(guò)D、C作下底AB的垂線,設(shè)垂足為E、F.在Rt△ADE和Rt△BCF中,可根據(jù)h的長(zhǎng)以及坡角的度數(shù)或坡比的值,求出AE、BF的長(zhǎng),進(jìn)而可求得AB的值.
解答:解:過(guò)D作DE⊥AB于E,過(guò)C作CF⊥AB于F.
Rt△ADE中,∠α=45°,DE=h=2米,
∴CF=DE=h=2(米).
Rt△BCF中,tanβ=,CF=h=2(米),
∴BF=2CF=4(米).
故AB=AE+EF+BF=AE+CD+BF=2+10+4=16(米).
答:路基底部AB的寬為16米.
點(diǎn)評(píng):此題主要考查了坡度問(wèn)題的應(yīng)用,坡度、坡角問(wèn)題通常要轉(zhuǎn)換為解直角三角形的問(wèn)題,必要時(shí)應(yīng)添加輔助線,構(gòu)造出直角三角形.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

設(shè)計(jì)建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設(shè)路基高為精英家教網(wǎng)h,兩側(cè)的坡角分別為α和β,已知h=2,α=45°,tanβ=
12
,CD=10.
(1)求路基底部AB的寬;
(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•南開(kāi)區(qū)二模)如圖,設(shè)計(jì)建造一條道路,路基的橫斷面為梯形ABCD,設(shè)路基高為h,兩側(cè)的坡角分別為α、β.已知h=2米,α=45°,tanβ=
12
,CD=10米.求路基底部AB的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,設(shè)計(jì)建造一條道路,路基的橫斷面為梯形ABCD,設(shè)路基高為h,兩側(cè)的坡角分別為α、β.已知h=2米,α=45°,tanβ=數(shù)學(xué)公式,CD=10米.求路基底部AB的寬.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:第4章《銳角三角形》中考題集(29):4.3 解直角三角形及其應(yīng)用(解析版) 題型:解答題

設(shè)計(jì)建造一條道路,路基的橫斷面為梯形ABCD,如圖(單位:米).設(shè)路基高為h,兩側(cè)的坡角分別為α和β,已知h=2,α=45°,tanβ=,CD=10.
(1)求路基底部AB的寬;
(2)修筑這樣的路基1000米,需要多少土石方?

查看答案和解析>>

同步練習(xí)冊(cè)答案