如圖,將邊長為2的正方形紙片ABCD折疊,使點(diǎn)B 落在CD上,落點(diǎn)記為E(不與點(diǎn)C,D重合),點(diǎn)A落在點(diǎn)F處,折痕MN交AD于點(diǎn)M,交BC于點(diǎn)N.若,則BN的長是   ,的值等于     ;若,且為整數(shù)),則的值等于       (用含的式子表示).

,

解析試題分析:連接BM,EM,BE,由題設(shè),得四邊形ABNM和四邊形FENM關(guān)于直線MN對稱,即可到得MN垂直平分BE,則BM=EM,BN=EN.根據(jù)正方形的性質(zhì)可得∠A=∠D=∠C=90°,設(shè)AB=BC=CD=DA=2,由可得CE=DE=1,設(shè)BN=x,則NE=x,NC=2-x,在Rt△CNE中,根據(jù)勾股定理即可列方程求得x的值,從而得到BN的長,在Rt△ABM和在Rt△DEM中,根據(jù)勾股定理可得AM2+AB2=BM2,DM2+DE2=EM2,則AM2+AB2=DM2+DE2.設(shè)AM=y,則DM=2-y,
即可列方程求得的值;當(dāng)四邊形ABCD為正方形時(shí),連接BE,,不妨令CD=CB=n,則CE=1,設(shè)BN=x,則EN=x,EN2=NC2+CE2,x2=(n-x)2+12,x=;作MH⊥BC于H,則MH=BC,又點(diǎn)B,E關(guān)于MN對稱,則MN⊥BE,∠EBC+∠BNM=90°;而∠NMH+∠BNM=90°,故∠EBC=∠NMH,則△EBC≌△NMH,則NH=EC=1,AM=BH=BN-NH=,從而可以求得結(jié)果.
連接BM,EM,BE

由題設(shè),得四邊形ABNM和四邊形FENM關(guān)于直線MN對稱.
∴MN垂直平分BE,
∴BM=EM,BN=EN.
∵四邊形ABCD是正方形,
∴∠A=∠D=∠C=90°,設(shè)AB=BC=CD=DA=2.
,
∴CE=DE=1.
設(shè)BN=x,則NE=x,NC=2-x.
在Rt△CNE中,NE2=CN2+CE2
∴x2=(2-x)2+12
解得,即
在Rt△ABM和在Rt△DEM中,AM2+AB2=BM2,DM2+DE2=EM2
∴AM2+AB2=DM2+DE2
設(shè)AM=y,則DM=2-y,
∴y2+22=(2-y)2+12
解得,即

當(dāng)四邊形ABCD為正方形時(shí),連接BE,
不妨令CD=CB=n,則CE=1,設(shè)BN=x,則EN=x,EN2=NC2+CE2,x2=(n-x)2+12,x=
作MH⊥BC于H,則MH=BC,

又點(diǎn)B,E關(guān)于MN對稱,則MN⊥BE,∠EBC+∠BNM=90°;
而∠NMH+∠BNM=90°,故∠EBC=∠NMH,則△EBC≌△NMH,
∴NH=EC=1,AM=BH=BN-NH=
則:
考點(diǎn):折疊的性質(zhì),正方形和矩形的性質(zhì),勾股定理
點(diǎn)評:折疊的性質(zhì):折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,位置變化,對應(yīng)邊和對應(yīng)角相等.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,將邊長為6cm的正六邊形紙板的六個(gè)角各剪切去一個(gè)全等的四邊形,再沿虛線折起,做成一個(gè)無蓋直六棱柱紙盒,使側(cè)面積等于底面積,被剪去的六個(gè)四邊形的面積和為
 
cm2.(結(jié)果精確到0.1cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時(shí)針方向向右作無滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過的路徑的長為( 。
精英家教網(wǎng)
A、
4+2
3
3
πa
B、
8+4
3
3
πa
C、
4+
3
3
πa
D、
4+2
3
6
πa

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•豐南區(qū)一模)如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時(shí)針方向向右作無滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過的路徑的長為
4+2
3
3
πa
4+2
3
3
πa

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•惠城區(qū)模擬)如圖,將邊長為a的正六邊形A1A2A3A4A5A6在直線l上由圖1的位置按順時(shí)針方向向右作無滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過的路徑的長
4+2
3
3
πa
4+2
3
3
πa

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,將邊長為3的正六邊形A1A2A3A4A5A6,在直線l上由圖1的位置按順時(shí)針方向向右作無滑動(dòng)滾動(dòng),當(dāng)A1第一次滾動(dòng)到圖2位置時(shí),頂點(diǎn)A1所經(jīng)過的路徑的長為(  )

查看答案和解析>>

同步練習(xí)冊答案