15、如圖①,點(diǎn)M為銳角三角形ABC內(nèi)任意一點(diǎn),連接AM、BM、CM.以AB為一邊向外作等邊三角形△ABE,將BM繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到BN,連接EN.
(1)求證:△AMB≌△ENB;
(2)若AM+BM+CM的值最小,則稱點(diǎn)M為△ABC的費(fèi)爾馬點(diǎn).若點(diǎn)M為△ABC的費(fèi)爾馬點(diǎn),試求此時(shí)∠AMB、∠BMC、∠CMA的度數(shù);
(3)小翔受以上啟發(fā),得到一個(gè)作銳角三角形費(fèi)爾馬點(diǎn)的簡(jiǎn)便方法:如圖②,分別以△ABC的AB、AC為一邊向外作等邊△ABE和等邊△ACF,連接CE、BF,設(shè)交點(diǎn)為M,則點(diǎn)M即為△ABC的費(fèi)爾馬點(diǎn).試說(shuō)明這種作法的依據(jù).
分析:(1)結(jié)合等邊三角形的性質(zhì),根據(jù)SAS可證△AMB≌△ENB;
(2)連接MN,由(1)的結(jié)論證明△BMN為等邊三角形,所以BM=MN,即AM+BM+CM=EN+MN+CM,所以當(dāng)E、N、M、C四點(diǎn)共線時(shí),AM+BM+CM的值最小,從而可求此時(shí)∠AMB、∠BMC、∠CMA的度數(shù);
(3)根據(jù)(2)中費(fèi)爾馬點(diǎn)的定義,又△ABC的費(fèi)爾馬點(diǎn)在線段EC上,同理也在線段BF上.因此線段EC與BF的交點(diǎn)即為△ABC的費(fèi)爾馬點(diǎn).
解答:解:(1)證明:∵△ABE為等邊三角形,
∴AB=BE,∠ABE=60°.
而∠MBN=60°,
∴∠ABM=∠EBN.
又∵BM=BN,
∴△AMB≌△ENB.
(2)連接MN.由(1)知,AM=EN.
∵∠MBN=60°,BM=BN,
∴△BMN為等邊三角形.
∴BM=MN.
∴AM+BM+CM=EN+MN+CM.
∴當(dāng)E、N、M、C四點(diǎn)共線時(shí),AM+BM+CM的值最。
此時(shí),∠BMC=180°-∠NMB=120°;
∠AMB=∠ENB=180°-∠BNM=120°;
∠AMC=360°-∠BMC-∠AMB=120°.
(3)由(2)知,△ABC的費(fèi)爾馬點(diǎn)在線段EC上,同理也在線段BF上.
因此線段EC與BF的交點(diǎn)即為△ABC的費(fèi)爾馬點(diǎn).
點(diǎn)評(píng):本題考查全等三角形的判定與性質(zhì)以及等邊三角形的性質(zhì),是一道綜合性的題目難度很大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在邊長(zhǎng)為1的小正方形組成的網(wǎng)格中,△ABC的三個(gè)頂點(diǎn)均在格點(diǎn)上,請(qǐng)按要求完成下列各題:
(1)用簽字筆畫(huà)AD∥BC(D為格點(diǎn)),連接CD;
(2)線段CD的長(zhǎng)為
 
;
(3)請(qǐng)你在△ACD的三個(gè)內(nèi)角中任選一個(gè)銳角,若你所選的銳角是
 
,則它所對(duì)應(yīng)的正弦函數(shù)值是
 

(4)若E為BC中點(diǎn),則tan∠CAE的值是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

閱讀下面的材料,并回答所提出的問(wèn)題:如圖所示,在銳角三角形ABC中,求證:
b
sinB
=
c
sinC

這個(gè)三角形不是一個(gè)直角三角形,不能直接使用銳角三角函數(shù)的知識(shí)去處理,所以必須構(gòu)造直角三角形,精英家教網(wǎng)過(guò)點(diǎn)A作AD⊥BC,垂足為D,則在Rt△ABD和Rt△ACD中由正弦定義可完成證明.
解:如圖,過(guò)點(diǎn)A作AD⊥BC,垂足為D,
在Rt△ABD中,sinB=
AD
AB
,則AD=csinB
Rt△ACD中,sinC=
AD
AC
,則AD=bsinC
所以c sinB=b sinC,即
b
sinB
=
c
sinC

(1)在上述分析證明過(guò)程中,主要用到了下列三種數(shù)學(xué)思想方法的哪一種( 。
A、數(shù)形結(jié)合的思想;B、轉(zhuǎn)化的思想;C、分類的思想
(2)用上述思想方法解答下面問(wèn)題.
在△ABC中,∠C=60°,AC=6,BC=8,求AB和△ABC的面積.
(3)用上述結(jié)論解答下面的問(wèn)題(不必添加輔助線)
在銳角三角形ABC中,AC=10,AB=5
6
,∠C=60°,求∠B的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:福建省泉州市2012年中考數(shù)學(xué)試題 題型:044

已知:A、B、C不在同一直線上.

(1)若點(diǎn)A、B、C均在半徑為R的⊙O上,

A、B、C如圖一,當(dāng)∠A=45°時(shí),R=1,求∠BOC的度數(shù)和BC的長(zhǎng)度;

Ⅱ.如圖二,當(dāng)∠A為銳角時(shí),求證sin∠A=;

(2)若定長(zhǎng)線段BC的兩個(gè)端點(diǎn)分別在∠MAN的兩邊AM、AN(B、C均與點(diǎn)A不重合)滑動(dòng),如圖三,當(dāng)∠MAN=60°,BC=2時(shí),分別作BP⊥AM,CP⊥AN,交點(diǎn)為點(diǎn)P,試探索:在整個(gè)滑動(dòng)過(guò)程中,P、A兩點(diǎn)的距離是否保持不變?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:福建省中考真題 題型:解答題

已知:A 、B 、C 不在同一直線上.
(1)若點(diǎn)A 、B 、C 均在半徑為R 的⊙O上,
(I)如圖一,當(dāng)∠A=45 °時(shí),R=1 ,求∠BOC 的度數(shù)和BC 的長(zhǎng)度; 
(Ⅱ)如圖二,當(dāng)∠A 為銳角時(shí),求證sin ∠A=;
(2).若定長(zhǎng)線段BC的兩個(gè)端點(diǎn)分別在∠MAN的兩邊AM、AN(B、C均與點(diǎn)A不重合)滑動(dòng),如圖三,當(dāng)∠MAN=60°,BC=2時(shí),分別作BP⊥AM,CP⊥AN,交點(diǎn)為點(diǎn)P ,試探索:在整個(gè)滑動(dòng)過(guò)程中,P、A兩點(diǎn)的距離是否保持不變?請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:A、B、C不在同一直線上.

(1).若點(diǎn)A、B、C均在半徑為R的⊙O上,

A、B、C如圖一,當(dāng)∠A=45°時(shí),R=1,求∠BOC的度數(shù)和BC的長(zhǎng)度;

Ⅱ.如圖二,當(dāng)∠A為銳角時(shí),求證sin∠A=;

(2).若定長(zhǎng)線段BC的兩個(gè)端點(diǎn)分別在∠MAN的兩邊AM、AN(B、C均與點(diǎn)A不重合)滑動(dòng),如圖三,當(dāng)∠MAN=60°,BC=2時(shí),分別作BP⊥AM,CP⊥AN,交點(diǎn)為點(diǎn)P ,試探索:在整個(gè)滑動(dòng)過(guò)程中,P、A兩點(diǎn)的距離是否保持不變?請(qǐng)說(shuō)明理由.         N  Q

 

查看答案和解析>>

同步練習(xí)冊(cè)答案