【題目】如圖,△AOB的邊OA半面鏡.∠AOB=36°,在OB邊上有點(diǎn)E,從點(diǎn)E射出一束光線經(jīng)平面鏡反射后,反射光線DC恰好滿足DC∥OB,已知入射光線、反射光線與半面鏡的夾角相等,即∠ODE=∠ADC,求∠DEB的度數(shù).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了加強(qiáng)公民的節(jié)水意識,合理利用水資源,某市采用價格調(diào)控的手段達(dá)到節(jié)水的目的,該市自來水收費(fèi)的價目表如下表(注:水費(fèi)按月份結(jié)算,表示立方米).
每月用水量 | 單價 |
不超過的部分 | 2元/ |
超出不超出 | 4元/ |
超出的部分 | 8元/ |
請根據(jù)上表的內(nèi)容解答下列問題:
(1)若某戶居民2月份用水,則應(yīng)收水費(fèi)_________.元
(2)若該戶居民3月份用水(其中),則應(yīng)收水費(fèi)多少元(用含a的代數(shù)式表示,并簡化).
(3)若該戶居民4,5兩個月共用水(5月份用水量超過了4月份),設(shè)4月份,用水,則該戶居民4,5兩個月共交水費(fèi)多少元(用含x的代數(shù)式表示,并簡化).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線y=ax2﹣2x+c與直線y=﹣x+3分別交于x軸、y軸上的B、C兩點(diǎn),拋物線的頂點(diǎn)為點(diǎn)D,聯(lián)結(jié)CD交x軸于點(diǎn)E.
(1)求拋物線的解析式以及點(diǎn)D的坐標(biāo);
(2)求tan∠BCD;
(3)點(diǎn)P在直線BC上,若∠PEB=∠BCD,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB、CD相交于點(diǎn)O.已知∠BOD=75°,OE把∠AOC分成兩個角,且∠AOE:∠EOC=2:3.
(1)求∠AOE的度數(shù);
(2)若OF平分∠BOE,問:OB是∠DOF的平分線嗎?試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把四張形狀大小完全相同的小正方形卡片(如圖1)不重疊地放在一個底面為長方形(長為mcm,寬為ncm)的盒子的底部(如圖2),盒子底面未被卡片覆蓋的部分用陰影表示.則圖2中兩塊陰影部分的周長和是( )
A. 4mcmB. 4ncmC. 2(m+n)cmD. 4(mn)cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:我國數(shù)學(xué)家華羅庚在一次出國訪問途中,看到飛機(jī)上:鄰座的乘客閱讀的雜志上有一道智力題,求59319的立方根,華羅庚脫口而擊.眾人驚命,忙問計算奧妙.你知道怎樣迅速準(zhǔn)確地計算出結(jié)果的嗎?諾按照下面的分析試一試
(1)由103=1000,1003=100000,可知是 位數(shù);
(2)由59319的個位數(shù)是9,可知的個位數(shù)是 ;
(3)如果劃去59319后面的三位319得到59,而33=27,43=64,由此確定的十位數(shù)是 .
請應(yīng)用以上方法計算:= . =
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級兩個班,各選派10名學(xué)生參加學(xué)校舉行的“詩詞大賽”預(yù)賽.參賽選手的成績?nèi)缦拢▎挝唬悍郑?/span>
九(1)班:88,91,92,93,93,93,94,98,99,100
九(2)班:89,93,93,93,95,96,96,96,98,99.
(1)九(2)班的平均分是 分;九(1)班的眾數(shù)是 分;
(2)若從兩個班成績最高的5位同學(xué)中選2人參加市級比賽,則這兩個人來自不同班級的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB=6,AD=9,∠BAD的平分線交BC于點(diǎn)E,交DC的延長線于點(diǎn)F,BG⊥AE,垂足為G,BG=4,則△CEF的周長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O的直徑,D為⊙O上一點(diǎn),以AD為斜邊作△ADC,使∠C=90°,∠CAD=∠DAB
(1)求證:DC是⊙O的切線;
(2)若AB=9,AD=6,求DC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com