精英家教網 > 初中數學 > 題目詳情

【題目】如圖,二次函數y=ax2+bx+c的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過A,C畫直線.

(1)求二次函數的解析式;

(2)點P在x軸正半軸上,且PA=PC,求OP的長;

(3)點M在二次函數圖象上,以M為圓心的圓與直線AC相切,切點為H.

①若M在y軸右側,且△CHM∽△AOC(點C與點A對應),求點M的坐標;

②若⊙M的半徑為,求點M的坐標.

【答案】(1)y=x2﹣x﹣2;(2)OP=;(3)①(i)M(1,﹣2)(ii)M′(, ),②點M的坐標為(2,0)或(-3,10).

【解析】(1)根據與x軸的兩個交點A、B的坐標,利設出兩點法解析式,然后把點C的坐標代入計算求出a的值,即可得到二次函數解析式;

(2)設OP=x,然后表示出PC、PA的長度,在Rt△POC中,利用勾股定理列式,然后解方程即可;

(3)①根據相似三角形對應角相等可得∠MCH=∠CAO,然后分(i)點H在點C下方時,利用同位角相等,兩直線平行判定CM∥x軸,從而得到點M的縱坐標與點C的縱坐標相同,是﹣2,代入拋物線解析式計算即可;(ii)點H在點C上方時,根據(2)的結論,點M為直線PC與拋物線的另一交點,求出直線PC的解析式,與拋物線的解析式聯(lián)立求解即可得到點M的坐標;

②在x軸上取一點D,過點DDE⊥AC于點E,可以證明△AED和△AOC相似,根據相似三角形對應邊成比例列式求解即可得到AD的長度,然后分點D在點A的左邊與右邊兩種情況求出OD的長度,從而得到點D的坐標,再作直線DM∥AC,然后求出直線DM的解析式,與拋物線解析式聯(lián)立求解即可得到點M的坐標.

解:(1)設該二次函數的解析式為:y=a(x+1)(x﹣2),

將x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2),

解得a=1,

∴拋物線的解析式為y=(x+1)(x﹣2),

即y=x2﹣x﹣2;

(2)設OP=x,則PC=PA=x+1,在Rt△POC中,

由勾股定理,得x2+22=(x+1)2,

解得,x=,

即OP=;

(3)①∵△CHM∽△AOC,

∴∠MCH=∠CAO,

(i)如圖1,當H在點C下方時,

∵∠OAC+∠OCA=90°,∠MCH=∠OAC

∴∠OCA+∠MCH=90°

∴∠OCM=90°=∠AOC

∴CM∥x軸

∴yM=﹣2,

∴x2﹣x﹣2=﹣2,

解得x1=0(舍去),x2=1,

∴M(1,﹣2),

(ii)如圖1,當H在點C上方時,

∵∠MCH=∠CAO,

∴PA=PC,由(2)得,M′為直線CP與拋物線的另一交點,

設直線CM′的解析式為y=kx﹣2,把P(,0)的坐標代入,得k﹣2=0,

解得k=

∴y=x﹣2,

x﹣2=x2﹣x﹣2,

解得x1=0(舍去),x2=

此時y=×﹣2=,

∴M′(, ),

②在x軸上取一點D,如圖(備用圖),過點D作DE⊥AC于點E,使DE=,,

在Rt△AOC中,AC=,

∵∠COA=∠DEA=90°,∠OAC=∠EAD,

∴△AED∽△AOC,∴

解得AD=3,

∴D(2,0)或D(﹣4,0).

過點D作DM∥AC,交拋物線于M,如圖(備用圖)

則直線DM的解析式為:y=﹣2x+4或y=﹣2x﹣8,

當﹣2x﹣8=x2﹣x﹣2時,即x2+x+6=0,方程無實數根,

當﹣2x+4=x2﹣x﹣2時,即x2+x﹣6=0,解得x1=2,x2=-3,

∴點M的坐標為(2,0)或(-3,10).

“點睛”本題是對二次函數的綜合考查,主要利用了待定系數法求二次函數解析式,勾股定理,相似三角形的性質,兩函數圖象交點的求解方法,綜合性較強,難度較大,要注意分情況討論求解.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如果點Pa,2)在第二象限,那么點Q(﹣3,a1)在第____象限.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在一次數學課外實踐活動中,要求測教學樓的高度AB、小剛在D處用高1.5m的測角儀CD,測得教學樓頂端A的仰角為30°,然后向教學樓前進40m到達E,又測得教學樓頂端A的仰角為60°.求這幢教學樓的高度AB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在本學期某次考試中,某校初二(1)、初二(2)兩班學生數學成績統(tǒng)計如下表:、

分數

50

60

70

80

90

100


二(1)班

3

5

16

3

11

12

二(2)班

2

5

11

12

13

7

請根據表格提供的信息回答下列問題:
(1)二(1)班平均成績?yōu)?/span>分,二(2)班平均成績?yōu)?/span>分,從平均成績看兩個班成績優(yōu)次?
(2)二(1)班眾數為分,二(2)班眾數為分.從眾數看兩個班的成績誰優(yōu)誰次?
(3)已知二(1)班的方差大于二(2)班的方差,那么說明什么?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線x=1,有下列5個結論:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m (am+b)(m≠1的實數).其中正確結論的有_____________ (填序號)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】下列計算正確的是(
A.(a23=a5
B.2a﹣a=2
C.(2a)2=4a
D.aa3=a4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】若∠A+B=180°,∠A 與∠C 互補,則∠B 與∠C 的關系是(

A.相等B.互補C.互余D.不能確定

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如果一個角的余角是60°,那么這個角的度數是_________°.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】大源村在“山上再造一個通城”工作中,計劃植樹200畝,全村在完成植樹40畝后,黨的群眾路線教育實踐活動工作小組加入村民植樹活動,并且該活動小組植樹的速度是全村植樹速度的1.5倍,整個植樹過程共用了13天完成.
(1)全村每天植樹多少畝?
(2)如果全村植樹每天需2000元工錢,黨的群眾路線教育實踐活動工作小組是義務植樹,因此實際工錢比計劃節(jié)約多少元?

查看答案和解析>>

同步練習冊答案