【題目】如圖,正方形ABCD中,E,F(xiàn)分別是邊CD,DA上的點,且CE=DF,AE與BF交于點M.求證:AE⊥BF.

【答案】證明:∵四邊形ABCD是正方形,

∴∠BAD=∠ADE=90°,AD=AB=DC,

∵DF=CE,

∴AF=DE,

∵在△ABF和△DAE中,

,

∴△ABF≌△DAE(SAS);

∴∠AFB=∠DEA,

∵∠D=90°,

∴∠DEA+∠DAE=90°,

∴∠AFB+∠DAE=90°,

∴∠AMF=180°﹣90°=90°,

∴AE⊥BF.


【解析】因為四邊形ABCD是正方形,得到四個角都是直角,四條邊都相等,從而得到△ABF≌△DAE,得到對應角相等,得到∠AMF=90°.
【考點精析】關于本題考查的正方形的性質(zhì),需要了解正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,禁止捕魚期間,某海上稽查隊在某海域巡邏,上午某一時刻在A處接到指揮部通知,在他們東北方向距離12海里的B處有一艘捕魚船,正在沿南偏東75°方向以每小時10海里的速度航行,稽查隊員立即乘坐巡邏船以每小時14海里的速度沿北偏東某一方向出發(fā),在C處成功攔截捕魚船,求巡邏船從出發(fā)到成功攔截捕魚船所用的時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某日在我國某島附近海域有兩艘自西向東航行的海監(jiān)船A、B,船在A船的正東方向,且兩船保持20海里的距離,某一時刻兩海監(jiān)船同時測得在A的東北方向,的北偏東15°方向有一我國漁政執(zhí)法船C,求此時船C與船B的距離是多少.(結果保留小數(shù)點后一位)
參考數(shù)據(jù): ≈1.414, ≈1.732, ≈2.236.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩座倉庫分別有農(nóng)用車12輛和6輛.現(xiàn)在需要調(diào)往A縣10輛,需要調(diào)往B縣8輛,已知從甲倉庫調(diào)運一輛農(nóng)用車到A縣和B縣的運費分別為40元和80元;從乙倉庫調(diào)運一輛農(nóng)用車到A縣和B縣的運費分別為30元和50元.

(1)設乙倉庫調(diào)往A縣農(nóng)用車x輛,先填好下表,再寫出總運費y關于x的函數(shù)關系式;

(2)若要求總運費不超過900元,問共有幾種調(diào)運方案?

(3)求出總運費最低的調(diào)運方案,最低運費是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)如圖1,ABCD,點M為直線AB,CD所確定的平面內(nèi)的一點,若∠A105,∠M108,請直接寫出∠C的度數(shù) ;

2)如圖2,ABCD,點P為直線AB,CD所確定的平面內(nèi)的一點,點E在直線CD上,AN平分∠PAB,射線AN的反向延長線交∠PCE的平分線于M,若∠P30,求∠AMC的度數(shù);

3)如圖3,點P與直線AB,CD在同一平面內(nèi),AN平分∠PAB,射線AN的反向延長線交∠PCD的平分線于M,若AMC180P,求證:ABCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高足球基本功,甲、乙、丙三位同學進行足球傳球訓練,球從一個人腳下隨機傳到另一個人腳下,且每位傳球人傳球給其余兩人的機會是均等的,由甲開始傳球,共傳三次.
(1)請用樹狀圖列舉出三次傳球的所有可能情況;
(2)三次傳球后,球回到甲腳下的概率大還是傳到乙腳下的概率大?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠A=∠C90°,BE平分∠ABC,DF平分∠CDA

(1)求證:BEDF

(2)若∠ABC56°,求∠ADF的大小.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是加熱食用油的溫度變化情況:

時間

0

10

20

30

40

油溫

10

30

50

70

90

王紅發(fā)現(xiàn),燒了110時,油沸騰了,則下列說法不正確的是(

A.沒有加熱時,油的溫度是10B.加熱50,油的溫度是110

C.估計這種食用油的沸點溫度約是230D.每加熱10,油的溫度升高30

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABCD中,過點DDE⊥AB于點E,點F在邊CD上,CF=AE,連接AF,BF.

(1)求證:四邊形BFDE是矩形

(2)CF=6,BF=8,DF=10,求證:AF是∠DAB的平分線.

查看答案和解析>>

同步練習冊答案