如圖,把1個面積為1的正方形等分成2個面積為的矩形,接著把面積為的矩形等分成2個面積為的矩形,再把面積為的矩形等分成2個面積為的矩形……如此進行下去,試利用圖中揭示的規(guī)律計算:

答案:255/256
解析:


練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

16、如圖,把一個邊長為a的正方形四個角截去邊長為b的四個小正方形,則剩下的部分的面積是
a2-4b2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在正方形ABCD中,AB=4cm,點E,F(xiàn),G,H分別是正方形的四條邊上的點,且AE=BF=CG=DH.如圖1所示.若把圖1中的四個直角三角形剪下來,拼成如圖2所示的面積為10cm2的正方形A1B1C1D1,則中間四邊形E1F1G1H1的面積等于
 
cm2
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•石景山區(qū)一模)如圖,把兩個全等的Rt△AOB和Rt△ECD分別置于平面直角坐標系xOy中,使點E與點B重合,直角邊OB、BC在y軸上.已知點D (4,2),過A、D兩點的直線交y軸于點F.若△ECD沿DA方向以每秒
2
個單位長度的速度勻速平移,設平移的時間為t(秒),記△ECD在平移過程中某時刻為△E′C′D′,E′D′與AB交于點M,與y軸交于點N,C′D′與AB交于點Q,與y軸交于點P(注:平移過程中,點D′始終在線段DA上,且不與點A重合).
(1)求直線AD的函數(shù)解析式;
(2)試探究在△ECD平移過程中,四邊形MNPQ的面積是否存在最大值?若存在,求出這個最大值及t的取值;若不存在,請說明理由;
(3)以MN為邊,在E′D′的下方作正方形MNRH,求正方形MNRH與坐標軸有兩個公共點時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

問題背景:“在△ABC中,AB、BC、AC三邊的長分別為
5
、
10
、
13
,求這個三角形的面積.”
小輝同學在解答這道題時,先建立一個正方形網(wǎng)格(每個小正方形的邊長為1),再在網(wǎng)絡中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),
(1)如圖所示.這樣不需求△ABC的高,而借用網(wǎng)格就能計算出它的面積是
3.5
3.5

(2)如圖我們把上述求面積的方法叫做構(gòu)圖法.若△DCE三邊的長分別為
m2+16n2
、
9m2+4n2
、
4m2+4n2
(m>0,n>0,且m≠n),試運用構(gòu)圖法求出這三角形的面積.

查看答案和解析>>

同步練習冊答案