【題目】小林準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段各圍成一個正方形.
要使這兩個正方形的面積之和等于,小林該怎么剪?
小峰對小林說:“這兩個正方形的面積之和不可能等于.”他的說法對嗎?請說明理由.
【答案】(1)較短的這段為16cm,較長的這段就為24cm;
(2)小峰的說法正確,這兩個正方形的面積之和不可能等于44cm2.
【解析】
試題(1)利用正方形的性質(zhì)表示出邊長進而得出等式求出即可;
(2)利用正方形的性質(zhì)表示出邊長進而得出等式,進而利用根的判別式求出即可.
試題解析:設剪成的較短的這段為xcm,較長的這段就為(40﹣x)cm,
由題意,得()2+()2=52;
解得:x1=16,x2=24,
當x=16時,較長的為40﹣16=24cm,當x=24時,較長的為40﹣24=16<24(舍去)
∴較短的這段為16cm,較長的這段就為24cm;
(2)設剪成的較短的這段為mcm,較長的這段就為(40﹣m)cm,
由題意得:()2+()2=44,
變形為:m2﹣40m+448=0,
∵△=﹣192<0,∴原方程無解,
∴小峰的說法正確,這兩個正方形的面積之和不可能等于44cm2.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在筆直的鐵路上A、B兩點相距25km,C、D為兩村莊,DA=10km,CB=15km,DA⊥AB于A,CB⊥AB于B,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得C、D兩村到E站的距離相等.求E應建在距A多遠處?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:平面直角坐標系中,點A(a,b)的坐標滿足|a﹣b|+b2﹣8b+16=0.
(1)如圖1,求證:OA是第一象限的角平分線;
(2)如圖2,過A作OA的垂線,交x軸正半軸于點B,點M、N分別從O、A兩點同時出發(fā),在線段OA上以相同的速度相向運動(不包括點O和點A),過A作AE⊥BM交x軸于點E,連BM、NE,猜想∠ONE與∠NEA之間有何確定的數(shù)量關系,并證明你的猜想;
(3)如圖3,F(xiàn)是y軸正半軸上一個動點,連接FA,過點A作AE⊥AF交x軸正半軸于點E,連接EF,過點F點作∠OFE的角平分線交OA于點H,過點H作HK⊥x軸于點K,求2HK+EF的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于拋物線.
(1)它與x軸交點的坐標為 ,與y軸交點的坐標為 ,頂點坐標為 ;
(2)在坐標系中利用描點法畫出此拋物線;
x | … | … | |||||
y | … | … |
(3)利用以上信息解答下列問題:若關于x的一元二次方程(t為實數(shù))在<x<的范圍內(nèi)有解,則t的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知CD是△ABC中AB邊上的高,以CD為直徑的⊙O分別交CA、CB于點E、F,點G是AD的中點.
(1)求證:GE是⊙O的切線;
(2)當△ADC滿足怎樣的條件時,四邊形EGDO恰為正方形?(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC 是等邊三角形,AB=4,E 是BC 邊上任意一點(不與B、C重合),在三角形外作等邊△CDE,連結(jié)AE、BD.
(1)根據(jù)題意畫出圖形;
(2)求證:AE=BD;
(3)△BDC能否為直角三角形?若能,求出BD長;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。
(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)
(2)連接DE,求證:△ADE≌△BDE。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,AB∥x軸,∠ABC=135°,且AB=4.
(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);
(2)求△ABC的面積(用含a的代數(shù)式表示);
(3)若△ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com