【題目】小林準備進行如下操作實驗:把一根長為的鐵絲剪成兩段,并把每一段各圍成一個正方形.

要使這兩個正方形的面積之和等于,小林該怎么剪?

小峰對小林說:“這兩個正方形的面積之和不可能等于.”他的說法對嗎?請說明理由.

【答案】1)較短的這段為16cm,較長的這段就為24cm;

2)小峰的說法正確,這兩個正方形的面積之和不可能等于44cm2

【解析】

試題(1)利用正方形的性質(zhì)表示出邊長進而得出等式求出即可;

2)利用正方形的性質(zhì)表示出邊長進而得出等式,進而利用根的判別式求出即可.

試題解析:設剪成的較短的這段為xcm,較長的這段就為(40﹣xcm,

由題意,得(2+2=52;

解得:x1=16,x2=24,

x=16,較長的為40﹣16=24cm,x=24,較長的為40﹣24=1624(舍去)

較短的這段為16cm,較長的這段就為24cm;

2)設剪成的較短的這段為mcm,較長的這段就為(40﹣mcm,

由題意得:(2+2=44,

變形為:m2﹣40m+448=0,

∵△=﹣1920,∴原方程無解,

小峰的說法正確,這兩個正方形的面積之和不可能等于44cm2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在筆直的鐵路上A、B兩點相距25km,CD為兩村莊,DA=10km,CB=15kmDAABA,CBABB,現(xiàn)要在AB上建一個中轉(zhuǎn)站E,使得CD兩村到E站的距離相等.求E應建在距A多遠處?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:平面直角坐標系中,點A(a,b)的坐標滿足|a﹣b|+b2﹣8b+16=0.

(1)如圖1,求證:OA是第一象限的角平分線;

(2)如圖2,過A作OA的垂線,交x軸正半軸于點B,點M、N分別從O、A兩點同時出發(fā),在線段OA上以相同的速度相向運動(不包括點O和點A),過A作AE⊥BM交x軸于點E,連BM、NE,猜想∠ONE與∠NEA之間有何確定的數(shù)量關系,并證明你的猜想;

(3)如圖3,F(xiàn)是y軸正半軸上一個動點,連接FA,過點A作AE⊥AF交x軸正半軸于點E,連接EF,過點F點作∠OFE的角平分線交OA于點H,過點H作HK⊥x軸于點K,求2HK+EF的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于拋物線.

1)它與x軸交點的坐標為 ,與y軸交點的坐標為 ,頂點坐標為 ;

2)在坐標系中利用描點法畫出此拋物線;

x








y








3)利用以上信息解答下列問題:若關于x的一元二次方程t為實數(shù))在x的范圍內(nèi)有解,則t的取值范圍是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,OP平分∠AOB,∠AOP=15°, PC∥OA,PD⊥OA于點D,PC=4,PD=______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知CD是ABC中AB邊上的高,以CD為直徑的O分別交CA、CB于點E、F,點G是AD的中點.

(1)求證:GE是O的切線;

(2)當△ADC滿足怎樣的條件時,四邊形EGDO恰為正方形?(直接寫出結(jié)果即可)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,ABC 是等邊三角形,AB=4E BC 邊上任意一點(不與B、C重合),在三角形外作等邊CDE,連結(jié)AE、BD

(1)根據(jù)題意畫出圖形;

(2)求證:AE=BD;

(3)△BDC能否為直角三角形?若能,求出BD長;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,∠A=30°,∠B=60°。

(1)作∠B的平分線BD,交AC于點D;作AB的中點E(要求:尺規(guī)作圖,保留作圖痕跡)

(2)連接DE,求證:△ADE≌△BDE。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C都在拋物線y=ax2﹣2amx+am2+2m﹣5(其中﹣<a<0)上,ABx軸,∠ABC=135°,且AB=4.

(1)填空:拋物線的頂點坐標為 (用含m的代數(shù)式表示);

(2)求ABC的面積(用含a的代數(shù)式表示);

(3)若ABC的面積為2,當2m﹣5≤x≤2m﹣2時,y的最大值為2,求m的值.

查看答案和解析>>

同步練習冊答案