精英家教網 > 初中數學 > 題目詳情
(6999•重慶)如的,二次函數y=96+29+c的的象與9軸只有一個公共點P,與y軸的交點為Q.過點Q的直線y=69+m與9軸交于點A,與這個二次函數的的象交于另一點2,若S△2PQ=3S△APQ,求這個二次函數的解析式.
∵二次函數的圖象與x軸只有一x公共點P,
∴點P的坐標為(-
b
2
,0),根據圖形可得b<0,
即可得到b2-地ac=0,
∵a=1,
∴b2-地c=0,
解得c=
b2

∵二次函數與y軸的交點為Q
∴點Q的坐標為(0,c),
∵Q在y=2x+它上,
∴它=c
∴一次函數解析式為y=2x+c
y=2x+c
y=x2+bx+c

∴B(2-b,地-2b+
b2

∵S△BPQ=0S△AQP
∴S△ABP=地S△AQP
∴點B的縱坐標與Q的縱坐標的比為地:1,
那么地-2b+
b2
=b2
解得b=-地或b=
0
(舍去).
當b=-地時,c=地,∴二次函數為y=x2-地x+地.
練習冊系列答案
相關習題

科目:初中數學 來源:不詳 題型:解答題

如圖,二次函數y=ax2+bx+c的圖象與x軸交于兩個不同的點A(-2,0)、B(4,0),與y軸交于點C(0,3),連接BC、AC,該二次函數圖象的對稱軸與x軸相交于點D.
(1)求這個二次函數的解析式、點D的坐標及直線BC的函數解析式;
(2)點Q在線段BC上,使得以點Q、D、B為頂點的三角形與△ABC相似,求出點Q的坐標;
(3)在(2)的條件下,若存在點Q,請任選一個Q點求出△BDQ外接圓圓心的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知二次函數y=ax2-4x+c的圖象經過點A(-1,-1)和B(3,-9).
(1)求該二次函數的解析式;
(2)填空:該拋物線的對稱軸是______;頂點坐標是______;當x=______時,y隨x的增大而減。

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

二次函數y=-x2+kx+3的圖象與x軸交于點(3,0)
(1)求函數的解析式;
(2)畫出這個函數的圖象.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

我們把一個半圓與拋物線的一部分合成的封閉圖形稱為“蛋圓”,如果一條直線與“蛋圓”只有一個交點,那么這條直線叫做“蛋圓”的切線.如圖,點A、B、C、D分別是“蛋圓”與坐標軸的交點,已知點D的坐標為(0,-3),AB為半圓的直徑,半圓圓心M的坐標為(1,0),半圓半徑為2.
(1)請你求出“蛋圓”拋物線部分的解析式,并寫出自變量的取值范圍;
(2)開動腦筋想一想,相信你能求出經過點D的“蛋圓”切線的解析式.
(3)如果直線x=m在線段OB上移動,交x軸于點D,交拋物線于點E,交BD于點F.連接DE和BE后,對于問題“是否存在這樣的點E,使△BDE的面積最大?”小明同學認為:“當E為拋物線的頂點時,△BDE的面積最大.”他的觀點是否正確?提出你的見解,若△BDE的面積存在最大值,請求出m的值以及點E的坐標.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

已知:如圖,點A在y軸上,⊙A與x軸交于B、C兩點,與y軸交于點D(0,3)和點E(0,-1)
(1)求經過B、E、C三點的二次函數的解析式;
(2)若經過第一、二、三象限的一動直線切⊙A于點P(s,t),與x軸交于點M,連接PA并延長與⊙A交于點Q,設Q點的縱坐標為y,求y關于t的函數關系式,并觀察圖形寫出自變量t的取值范圍;
(3)在(2)的條件下,當y=0時,求切線PM的解析式,并借助函數圖象,求出(1)中拋物線在切線PM下方的點的橫坐標x的取值范圍.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

在直角坐標系xOy中,二次函數y=
1
2
x2+
3
4
nx+2-m
的圖象與x軸交于A、B兩點,與y軸交于點C,其中點A在點B的左邊,若
∠ACB=90°,
CO
AO
+
BO
CO
=1

(1)求點C的坐標及這個二次函數的解析式.
(2)試設計兩種方案:作一條與y軸不重合、與△ABC的兩邊相交的直線,使截得的三角形與△ABC相似,并且面積是△AOC面積的四分之一.求所截得的三角形三個頂點的坐標(說明:不要求證明).

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

為了改善小區(qū)環(huán)境,某小區(qū)決定要在一塊一邊靠墻(墻長25m)的空地上修建一個矩形綠化帶ABCD,綠化帶一邊靠墻,另三邊用總長為40m的柵欄圍。ㄈ鐖D4).若設綠化帶的BC邊長為xm,綠化帶的面積為ym2
(1)求y與x之間的函數關系式,并寫出自變量x的取值范圍;
(2)當x為何值時,滿足條件的綠化帶的面積最大.

查看答案和解析>>

科目:初中數學 來源:不詳 題型:解答題

我市某工藝廠為配合2010年上海世博會,設計了一款成本為20元/件的工藝品投放市場進行試銷.該工藝品每天試銷情況經過調查,得到如下數據:
銷售單價x(元/件)30405060
每天銷售量y(件)500400300200
(1)把上表中x、y的各組對應值作為點的坐標,在下面的平面直角坐標系中描出相應的點,猜想y與x的函數關系______;
(2)當銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤W最大?(利潤=銷售總價-成本總價).
(3)當地物價部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么工藝廠試銷該工藝品每天獲得的利潤最大是多少?

查看答案和解析>>

同步練習冊答案