如圖,在平面直角坐標(biāo)中,直線l經(jīng)過原點,且與y軸正半軸所夾的銳角為60°,過點A(0,1)作y軸的垂線l于點B,過點B1作作直線l的垂線交y軸于點A1,以A1B.BA為鄰邊作ABA1C1;過點A1作y軸的垂線交直線l于點B1,過點B1作直線l的垂線交y軸于點A2,以A2B1.B1A1為鄰邊作A1B1A2C2;…;按此作法繼續(xù)下去,則Cn的坐標(biāo)是   

試題分析:∵直線l經(jīng)過原點,且與y軸正半軸所夾的銳角為60°,∴直線l的解析式為y=x。
∵AB⊥y軸,點A(0,1),∴可設(shè)B點坐標(biāo)為(x,1)。
將B(x,1)代入y=x,得1=x,解得x=
∴B點坐標(biāo)為(,1),AB=。
在Rt△A1AB中,∠AA1B=90°﹣60°=30°,∠A1AB=90°,
∴AA1=AB=3,OA1=OA+AA1=1+3=4。
ABA1C1中,A1C1=AB=,
∴C1點的坐標(biāo)為(,4),即(,41)。
x=4,解得x=4!郆1點坐標(biāo)為(4,4),A1B1=4。
在Rt△A2A1B1中,∠A1A2B1=30°,∠A2A1B1=90°,
∴A1A2=A1B1=12,OA2=OA1+A1A2=4+12=16。
A1B1A2C2中,A2C2=A1B1=4,
∴C2點的坐標(biāo)為(,16),即(,42)。
同理,可得C3點的坐標(biāo)為(,64),即(,43)。

以此類推,則Cn的坐標(biāo)是()。 
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)汽車油箱中的余油量Q(升)是它行駛的時間(小時)的一次函數(shù).某天該汽車外出時,油箱中余油量與行駛時間的變化關(guān)系如圖:

(1)根據(jù)圖象,求油箱中的余油Q與行駛時間的函數(shù)關(guān)系.(7分)
(2)從開始算起,如果汽車每小時行駛40千米,當(dāng)油箱中余油 20升時,該汽車行駛了多少千米?(5分)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知正比例函數(shù)的圖象經(jīng)過點(1,-2),則正比例函數(shù)的解析式為【   】
A.  B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,平面直角坐標(biāo)系中,矩形OABC的對角線AC=12,tan∠ACO=,

(1)求B、C兩點的坐標(biāo);
(2)把矩形沿直線DE對折使點C落在點A處,DE與AC相交于點F,求直線DE的解析式;
(3)若點M在直線DE上,平面內(nèi)是否存在點N,使以O(shè)、F、M、N為頂點的四邊形是菱形?若存在,請直接寫出點N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

某游客為爬上3千米的山頂看日出,先用1小時爬了2千米,休息0.5小時后,用1小時爬上山頂。山高h與游客爬山所用時間t之間的函數(shù)關(guān)系大致圖形表示是(    )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

對于點A(x1,y1),B(x2,y2),定義一種運算:.例如,A(-5,4),B(2,﹣3),.若互不重合的四點C,D,E,F(xiàn),滿足,則C,D,E,F(xiàn)四點【   】
A.在同一條直線上B.在同一條拋物線上
C.在同一反比例函數(shù)圖象上D.是同一個正方形的四個頂點

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知一次函數(shù)y=kx+b(k、b為常數(shù)且k≠0)的圖象經(jīng)過點A(0,﹣2)和點B(1,0),則k=     ,b=     

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

青海新聞網(wǎng)訊:西寧市為加大向國家環(huán)境保護模范城市大步邁進的步伐,積極推進城市綠地、主題公園、休閑場地建設(shè).園林局利用甲種花卉和乙種花卉搭配成A、B兩種園藝造型擺放在夏都大道兩側(cè).搭配數(shù)量如下表所示:
 
甲種花卉(盆)
乙種花卉(盆)
A種園藝造型(個)


B種園藝造型(個)


(1)已知搭配一個A種園藝造型和一個B種園藝造型共需元.若園林局搭配A種園藝造型個,B種園藝造型個共投入元.則A、B兩種園藝 造型的單價分別是多少元?
(2)如果搭配A、B兩種園藝造型共個,某校學(xué)生課外小組承接了搭配方案的設(shè)計,其中甲種花卉不超過盆,乙種花卉不超過盆,問符合題意的搭配方案有幾種?請你幫忙設(shè)計出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知一次函數(shù)y=x﹣2,當(dāng)函數(shù)值y>0時,自變量x的取值范圍在數(shù)軸上表示正確的是【   】
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案