若拋物線y=a(x+m)2的對稱軸為x=-2,且它與y=-3x2的圖象形狀相同,開口方向相反,則(a,m)關(guān)于x軸的對稱點(diǎn)坐標(biāo)為________.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(浙江臺州卷)數(shù)學(xué) 題型:解答題
(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點(diǎn)A,它的頂點(diǎn)為
點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對稱點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點(diǎn)P,使得△PBD是一個等腰三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇省九年級上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:填空題
若拋物線y=ax2+bx+c經(jīng)過點(diǎn)(0,―3),(2,―3)且與x軸的一個交點(diǎn)坐標(biāo)是(―2,0),則與x軸的另一個交點(diǎn)坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年浙江省樂清市九年級第一次月考數(shù)學(xué)試卷(解析版) 題型:解答題
(本題10分)如圖,矩形OBCD的邊OD、OB分別在x軸正半軸和y軸負(fù)半軸上,且OD=10,OB=8.將矩形的邊BC繞點(diǎn)B逆時針旋轉(zhuǎn),使點(diǎn)C恰好與x軸上的點(diǎn)A重合.
(1)直接寫出點(diǎn)A、B的坐標(biāo):A( , )、B( , );
(2)若拋物線y=-x2+bx+c經(jīng)過點(diǎn)A、B,請求出這條拋物線的解析式;
(3)當(dāng)≤x≤7,在拋物線上存在點(diǎn)P,使△ABP的面積最大,那么△ABP最大面積是 .(請直接寫出結(jié)論,不需要寫過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011年初中畢業(yè)升學(xué)考試(湖南郴州卷)數(shù)學(xué) 題型:解答題
(11·臺州)(14分)已知拋物線y=a(x-m)2+n與y軸交于點(diǎn)A,它的頂點(diǎn)為
點(diǎn)B,點(diǎn)A、B關(guān)于原點(diǎn)O的對稱點(diǎn)分別為C、D.若A、B、C、D中任何三點(diǎn)都不在一直
線上,則稱四邊形ABCD為拋物線的伴隨四邊形,直線AB為拋物線的伴隨直線.
(1)如圖1,求拋物線y=(x-2)2+1的伴隨直線的解析式.
(2)如圖2,若拋物線y=a(x-m)2+n(m>0)的伴隨直線是y=x-3,伴隨四邊形的面積為12,求此拋物線的解析式.
(3)如圖3,若拋物線y=a(x-m)2+n的伴隨直線是y=-2x+b(b>0),且伴隨四邊形ABCD是矩形.
①用含b的代數(shù)式表示m、n的值;
②在拋物線的對稱軸上是否存在點(diǎn)P,使得△PBD是一個等腰三角形?若存在,請直接寫出點(diǎn)P的坐標(biāo)(用含b的代數(shù)式表示),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com