定義運(yùn)算a?b=a(1-b),下列給出了關(guān)于這種運(yùn)算的幾個(gè)結(jié)論:
①2?(-2)=6;
②a?b=b?a;
③若a+b=0,則(a?a)+(b?b)=2ab;
④若a?b=0,則a=0.
其中正確結(jié)論的序號(hào)是    .(把在橫線上填上你認(rèn)為所有正確結(jié)論的序號(hào))
【答案】分析:本題需先根據(jù)a?b=a(1-b)的運(yùn)算法則,分別對(duì)每一項(xiàng)進(jìn)行計(jì)算得出正確結(jié)果,最后判斷出所選的結(jié)論.
解答:解:∵a?b=a(1-b),
①2?(-2)=6
=2×[1-(-2)]
=2×3
=6
故本選項(xiàng)正確;
②a?b
=a×(1-b)
=a-ab
b?a
=b(1-a)
=b-ab,
故本選項(xiàng)錯(cuò)誤;
③∵(a?a)+(b?b)
=[a(1-a)]+[b(1-b}]
=a-a2+b-b2,
∵a+b=0,
∴原式=(a+b)-(a2+b2
=0-[(a+b)2-2ab]
=2ab,
故本選項(xiàng)正確;
④∵a?b
=a(1-b)=0,
∴a=0錯(cuò)誤.
故答案為①③
點(diǎn)評(píng):本題主要考查了整式的混合運(yùn)算,在解題時(shí)要根據(jù)所提供的公式是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•龍巖模擬)現(xiàn)定義運(yùn)算“⊕”:對(duì)于任意實(shí)數(shù)a、b,當(dāng)a≥b時(shí),a⊕b=a2;當(dāng)a<b時(shí),a⊕b=b2.若(1⊕x)-(3⊕x)=-5,則x的值為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•新華區(qū)一模)定義運(yùn)算a⊕b=a(1-b),下面給出了這種運(yùn)算的四個(gè)結(jié)論:
①2⊕(-2)=6;
②若a+b=0,則(a⊕a)+(b⊕b)=2ab;
③a⊕b=b⊕a;
④若a⊕b=0,則a=0或b=1.
其中結(jié)論正確的有( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•槐蔭區(qū)二模)現(xiàn)定義運(yùn)算“★”,對(duì)于任意實(shí)數(shù)a、b,都有a★b=a2-3a+b,如:4★5=42-3×4+5,若x★2=6,則實(shí)數(shù)x的值是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

對(duì)于任意非零實(shí)數(shù)a,b,定義運(yùn)算“☆”如下:a☆b=
a-b
2ab
,則2☆1+3☆2+4☆3+…+2010☆2009+2011☆2010=
1005
2011
1005
2011

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義運(yùn)算“@”的運(yùn)算法則為:x@y=xy-1,例如(2@5)=2x5-1=9.則(2@3)@4=
19
19

查看答案和解析>>

同步練習(xí)冊答案