【題目】(本題10分)對(duì)于平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),若點(diǎn)P的坐標(biāo)為(a+,ka+b)(k為常數(shù),k≠0),則稱點(diǎn)P′為點(diǎn)P的“k屬派生點(diǎn)”.例如:P(1,4)的“2屬派生點(diǎn)”為P′(1+,2×1+4),即P′(3,6).
(1) ① 點(diǎn)P(-1,-2)的“2屬派生點(diǎn)”P′的坐標(biāo)為_(kāi)______________
② 若點(diǎn)P的“k屬派生點(diǎn)”為P′(3,3),請(qǐng)寫出一個(gè)符合條件的點(diǎn)P的坐標(biāo)_____________
(2) 若點(diǎn)P在x軸的正半軸上,點(diǎn)P的“k屬派生點(diǎn)”為P′點(diǎn),且△OPP′為等腰直角三角形,則k的值為_(kāi)___________
(3) 如圖,點(diǎn)Q的坐標(biāo)為(0, ),點(diǎn)A在函數(shù)(x<0)的圖象上,且點(diǎn)A是點(diǎn)B的“屬派生點(diǎn)”.當(dāng)線段BQ最短時(shí),求B點(diǎn)坐標(biāo).
【答案】(1)①;②(1,2)(答案不唯一);(2);(3).
【解析】試題分析:(1)①根據(jù)派生點(diǎn)的定義,點(diǎn)P的“2屬派生點(diǎn)” 的坐標(biāo)為(, ),即.
②答案不唯一,只需橫、縱坐標(biāo)之和為3即可,如(1,2).
(2)若點(diǎn)P在x軸的正半軸上,則P(a,0),點(diǎn)P的“k屬派生點(diǎn)”為點(diǎn)為(, ).
∵且△為等腰直角三角形,∴.
(3)求出點(diǎn)B所在的直線,根據(jù)垂直線段最短的性質(zhì)即可求得B點(diǎn)坐標(biāo).
試題解析:(1)①.
②.(1,2).
(2).
(3)設(shè)B(a,b).
∵B的“屬派生點(diǎn)”是A,∴.
∵點(diǎn)A還在反比例函數(shù)的圖象上,
∴.∴.
∵,∴.∴.
∴B在直線上.
過(guò)Q作的垂線QB1,垂足為B1,
∵,且線段BQ最短,∴B1即為所求的點(diǎn)B.
∴易求得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在數(shù)|﹣2|,﹣(﹣2),+(-2)中,負(fù)數(shù)的個(gè)數(shù)有( )個(gè).
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,
(1) 取點(diǎn)M(1,0),則點(diǎn)M到直線l: 的距離為_(kāi)________,取直線與直線l平行,則兩直線距離為_(kāi)________.
(2) 已知點(diǎn)P為拋物線y=x2-4x的x軸上方一點(diǎn),且點(diǎn)P到直線l: 的距離為,求點(diǎn)P的坐標(biāo).
(3) 若直線y=kx+m與拋物線y=x2-4x相交于x軸上方兩點(diǎn)A、B(A在B的左邊),且∠AOB=90°,求點(diǎn)P(2,0)到直線y=kx+m的距離的最大時(shí)直線y=kx+m的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)A在原點(diǎn),B,C坐標(biāo)分別為B(3,0),C(2,2),將△ABC向左平移1個(gè)單位后再向下平移2單位,可得到△A′B′C′.
(1)請(qǐng)畫出平移后的△A′B′C′的圖形;
(2)寫出△A′B′C′各個(gè)頂點(diǎn)的坐標(biāo);
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線y=kx+k﹣1經(jīng)過(guò)點(diǎn)(m,n+3)和(m+1,2n﹣1),且0<k<2,則n的取值范圍是( )
A. 0<n<2B. 0<n<4C. 2<n<6D. 4<n<6
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】)在信宜市某“三華李”種植基地有A,B兩個(gè)品種的樹(shù)苗出售,已知A種比B種每株多2元,買1株A種樹(shù)苗和2株B種樹(shù)苗共需20元.
(1)問(wèn)A,B兩種樹(shù)苗每株分別是多少元?
(2)為擴(kuò)大種植,某農(nóng)戶準(zhǔn)備購(gòu)買A,B兩種樹(shù)苗共360株,且A種樹(shù)苗數(shù)量不少于B種數(shù)量的一半,請(qǐng)求出費(fèi)用最省的購(gòu)買方案.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com