分析 (1)根據(jù)等腰三角形的性質(zhì)可證∠DBM=∠ECM,可證△BDM≌△CEM,可得MD=ME,即可解題;
(2)連接AM,利用等腰三角形的性質(zhì)得到直角△ABM,利用直角三角形的性質(zhì),D為AB的中點(diǎn),所以DM=$\frac{1}{2}$AB=4.
解答 解:(1)在△ABC中,
∵AB=AC,
∴∠DBM=∠ECM,
∵M(jìn)是BC的中點(diǎn),
∴BM=CM,
在△BDM和△CEM中,
$\left\{\begin{array}{l}{BD=CE}\\{∠DBM=∠ECM}\\{BM=CM}\end{array}\right.$,
∴△BDM≌△CEM(SAS),
∴MD=ME.
(2)如圖,連接AM,
∵△ABC中,AB=AC,M是BC的中點(diǎn),
∴AM⊥BC,
∴得到直角△ABM,
∵D為AB的中點(diǎn),
∴DM=$\frac{1}{2}$AB=$\frac{1}{2}×8$=4.
點(diǎn)評(píng) 本題考查了全等三角形的判定,等腰三角形的性質(zhì),考查了全等三角形對(duì)應(yīng)邊相等的性質(zhì),解決本題的關(guān)鍵是證明△BDM≌△CEM.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com