如圖,過A、C兩點(diǎn)的拋物線y=x2+bx+c上有一點(diǎn)M,已知A(-1,0),C(0,-2),
(1)這個(gè)拋物線的解析式為______;
(2)作⊙M與直線AC相切,切點(diǎn)為C,則M點(diǎn)的坐標(biāo)為______.
(1)將A(-1,0),C(0,-2)的坐標(biāo)代入y=x2+bx+c得
1-b+c=0
c=-2
,
解得
b=-1
c=-2

故此拋物線的解析式為y=x2-x-2;

(2)設(shè)直線AC的解析式為y=kx+m,將A(-1,0),C(0,-2)的坐標(biāo)代入得
-k+m=0
m=-2

解得
k=-2
m=-2

故直線AC的解析式為y=-2x-2,
∵⊙M與直線AC相切,
∴與直線AC垂直的直徑所在的直線為y=
1
2
x+n,
∵切點(diǎn)為C,
∴n=-2,
∴與直線AC垂直的直徑所在的直線為y=
1
2
x-2,
設(shè)M(a,a2-a-2),
1
2
a-2=a2-a-2,
解得a1=0(舍去),a2=1.5,
∴M(1.5,-1.25).
故答案為:y=x2-x-2,(1.5,-1.25).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+c經(jīng)過A(-1,0)、B(3,0)、C(0,3)三點(diǎn),直線l是拋物線的對稱軸.
(1)求拋物線的解析式和對稱軸;
(2)設(shè)點(diǎn)P是直線l上的一個(gè)動點(diǎn),當(dāng)△PAC是以AC為斜邊的Rt△時(shí),求點(diǎn)P的坐標(biāo);
(3)在直線l上是否存在點(diǎn)M,使△MAC為等腰三角形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由;
(4)設(shè)過點(diǎn)A的直線與拋物線在第一象限的交點(diǎn)為N,當(dāng)△ACN的面積為
15
8
時(shí),求直線AN的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,有一個(gè)橫截面是拋物線的運(yùn)河,一次,運(yùn)河管理員將一根長6m的鋼管(AB)一端在運(yùn)河底部A點(diǎn),另一端露出水面并靠在運(yùn)河邊緣的B點(diǎn),發(fā)現(xiàn)鋼管4m浸沒在水中(AC=4米),露出水面部分的鋼管BC與水面部分的鋼管BC與水面成30°的夾角(鋼管與拋物線的橫截面在同一平面內(nèi))
(1)以水面所在直線為x軸,建立如圖所示的直角坐標(biāo)系,求該運(yùn)河橫截面的拋物線解析式;
(2)若有一艘貨船從當(dāng)中通過,已知貨船底部最寬處為12米,吃水深(即船底與水面的距離)為1米,此時(shí)貨船是否能安全通過該運(yùn)河?若能,請說明理由;若不能,則需上游開閘放水提高水位,當(dāng)水位上升多少米時(shí),貨船能順利通過運(yùn)河?(船與河床之間的縫隙忽略不計(jì))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

拋物線y=-x2+bx+c的圖象如圖所示,則此拋物線的解析式為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,拋物線y=-
m-4
8
x2+
2m-7
3
x+m2-6m+8
經(jīng)過原點(diǎn)O,點(diǎn)B(-2,n)在這條拋物線上.
(1)求拋物線的解析式;
(2)將直線y=-2x沿y軸向下平移b個(gè)單位后得到直線l,若直線l經(jīng)過B點(diǎn),求n、b的值;
(3)在(2)的條件下,設(shè)拋物線的對稱軸與x軸交于點(diǎn)C,直線l與y軸交于點(diǎn)D,且與拋物線的對稱軸交于點(diǎn)E.若P是拋物線上一點(diǎn),且PB=PE,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,一小球從斜坡O點(diǎn)處拋出,球的拋出路線可以用二次函數(shù)y=4x-
1
2
x2
刻畫,斜坡可以用一次函數(shù)y=
1
2
x
刻畫.
(1)求小球到達(dá)的最高點(diǎn)的坐標(biāo);
(2)小球的落點(diǎn)是A,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中,拋物線y=-
2
3
x2+bx+c經(jīng)過A(0,-4)、B(x1,0)、C(x2,0)三點(diǎn),且x2-x1=5.
(1)求b、c的值;
(2)在拋物線上求一點(diǎn)D,使得四邊形BDCE是以BC為對角線的菱形;
(3)在拋物線上是否存在一點(diǎn)P,使得四邊形BPOH是以O(shè)B為對角線的菱形?若存在,求出點(diǎn)P的坐標(biāo),并判斷這個(gè)菱形是否為正方形;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,一條拋物線與x軸相交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),其頂點(diǎn)P在線段MN上移動.若點(diǎn)M、N的坐標(biāo)分別為(-1,-2)、(1,-2),點(diǎn)B的橫坐標(biāo)的最大值為3,則點(diǎn)A的橫坐標(biāo)的最小值為( 。
A.-3B.-1C.1D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知等邊三角形的邊長為x(cm),則此三角形的面積S(cm2)關(guān)于x的函數(shù)關(guān)系式是______.

查看答案和解析>>

同步練習(xí)冊答案