【題目】如圖,△ABC的兩條高線BD,CE相交于點F,已知∠ABC=60°,AB=10,CF=EF,則△ABC的面積為( )
A.20
B.25
C.30
D.40
【答案】A
【解析】解:連接AF延長AF交BC于G.設(shè)EF=CF=x, ∵BD、CE是高,
∴AG⊥BC,
∵∠ABC=60°,∠AGB=90°,
∴∠BAG=30°,
在Rt△AEF中,∵EF=x,∠EAF=30°,∴AE= x,
在Rt△BCE中,∵EC=2x,∠CBE=60°,∴BE= x.
∴ x+ x=10,
∴x=2 ,
∴CE=4 ,
∴S△ABC= ABCE= ×10×4 =20 .
故選A.
連接AF延長AF交BC于G.設(shè)EF=CF=x,連接AF延長AF交BC于G.設(shè)EF=CF=x,因為BD、CE是高,所以AG⊥BC,由∠ABC=60°,∠AGB=90°,推出∠BAG=30°,在Rt△AEF中,由EF=x,∠EAF=30°可得AE= x,在Rt△BCE中,由EC=2x,∠CBE=60°可得BE= x.可得 x+ x=10,解方程即可解決問題.
科目:初中數(shù)學 來源: 題型:
【題目】小明和爸爸周末步行去游泳館游冰,爸爸先出發(fā)了一段時間后小明才出發(fā),途中小明在離家1400米處的報亭休息了一段時間后繼續(xù)按原來的速度前往游泳館.兩人離家的距離y(米)與小明所走時間x(分鐘)之間的函數(shù)關(guān)系如圖所示,請結(jié)合圖象信息解答下列問題:
(1)小明出發(fā) 分鐘后第一次與爸爸相遇;
(2)分別求出爸爸離家的距離y1和小明到達報亭前離家的距離y2與時間x之間的函數(shù)關(guān)系式;
(3)求小明在報亭休息了多長時間遇到姍姍來遲的爸爸;
(4)若游泳館離小明家2000米,請你通過計算說明誰先到達游泳館.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖(1),Rt△ABC中,∠ACB=90°,CD⊥AB,垂足為D。AF平分∠CAB,交CD于點E,交CB于點F。
(1)求證:CE=CF。
(2)將圖(1)中的△ADE沿AB向右平移到△A′D′E′的位置,使點E′落在BC邊上,其它條件不變,如圖(2)所示。試猜想:BE′與CF有怎樣的數(shù)量關(guān)系?請證明你的結(jié)論。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,直線分別交x軸、y軸于A、B兩點,點P是線段AB上的一動點,以P為圓心,r為半徑畫圓.
(1)若點P的橫坐標為﹣3,當⊙P與x軸相切時,則半徑r為 ,此時⊙P與y軸的位置關(guān)系是 .(直接寫結(jié)果)
(2)若,當⊙P與坐標軸有且只有3個公共點時,求點P的坐標.
(3)如圖2,當圓心P與A重合,時,設(shè)點C為⊙P上的一個動點,連接OC,將線段OC繞點O順時針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長的最值并直接寫出對應(yīng)的點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:,OB,OM,ON是內(nèi)的射線.
如圖1,若OM平分,ON平分當射線OB繞點O在內(nèi)旋轉(zhuǎn)時,______度
也是內(nèi)的射線,如圖2,若,OM平分,ON平分,當繞點O在內(nèi)旋轉(zhuǎn)時,求的大。
在的條件下,若,當在繞O點以每秒的速度逆時針旋轉(zhuǎn)t秒,如圖3,若::3,求t的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】樂樂是一名健步運動的愛好者,她用手機軟件記錄了某個月(30天)每天健步走的步數(shù)(單位:萬步),并將記錄結(jié)果繪制成了如圖所示的統(tǒng)計圖(不完整).
(1)若樂樂這個月平均每天健步走的步數(shù)為1.32萬步,試求她走1.3萬步和1.5萬步的天數(shù);
(2)求這組數(shù)據(jù)中的眾數(shù)和中位數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線l與x軸,y軸分別交于M,N兩點,且OM=ON=3.
(1)求這條直線的函數(shù)表達式;
(2)Rt△ABC與直線l在同一個平面直角坐標系內(nèi),其中∠ABC=90°,AC=2 ,A(1,0),B(3,0),將△ABC沿著x軸向左平移,當點C落在直線l上時,求線段AC掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,小穎在教學樓四層樓上,每層樓高均為3米,測得目高1.5米,看到校園里的圓形花園最近點的俯角為60°,最遠點的俯角為30°,請你幫小穎算出圓形花園的面積是多少平方米?(結(jié)果保留1位小數(shù))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(1)若關(guān)于x的方程2x﹣3=1和=k﹣3x有相同的解,求k的值
(2)閱讀材料:解方程組時,可由①得x﹣y=1③,然后再將③代入②得4×1﹣y=5,求得y=﹣1,從而進一步求得,這種方法被稱為“整體代入法”,請用上述方法解方程組
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com