【題目】如圖,AB是⊙O的切線,B為切點,圓心在AC上,∠A=30°,D為 的中點.
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.
【答案】
(1)證明:∵AB是⊙O的切線,
∴OB⊥AB,
∵∠A=30°,
∴∠AOB=60°,
∵OB=OC,
∴∠OCB=∠OBC= ∠AOB=30°,
∴∠A=∠OCB,
∴AB=BC
(2)證明:連接OD,
∵∠AOB=60°,
∴∠BOC=120°,
∵D為 的中點,
∴ = ,∠BOD=∠COD=60°,
∵OB=OD=OC,
∴△BOD與△COD是等邊三角形,
∴OB=BD=OC=CD,
∴四邊形BOCD是菱形.
【解析】(1)由AB是⊙O的切線,∠A=30°,易求得∠OCB的度數(shù),繼而可得∠A=∠OCB=30°,又由等角對等邊,證得AB=BC;(2)首先連接OD,易證得△BOD與△COD是等邊三角形,可得OB=BD=OC=CD,即可證得四邊形BOCD是菱形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)小組的10位同學(xué)站成一列做報數(shù)游戲,規(guī)則是:從前面第一位同學(xué)開始,每位同學(xué)依次報自己順序數(shù)的倒數(shù)的2倍加1,第1位同學(xué)報( +1),第2位同學(xué)報( +1),第3位同學(xué)報( +1)…這樣得到的n個數(shù)的積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名隊員參加射擊訓(xùn)練,成績分別繪制成下列兩個統(tǒng)計圖:
根據(jù)以上信息,整理分析數(shù)據(jù)如下:
平均成績(環(huán)) | 中位數(shù)(環(huán)) | 眾數(shù)(環(huán)) | 方差 | |
甲 | a | 7 | 7 | 1.2 |
乙 | 7 | b | 8 | c |
(1)寫出表格中a,b,c的值;
(2)分別運用表中的四個統(tǒng)計量,簡要分析這兩名隊員的射擊成績,若選派其中一名參賽,你認為應(yīng)選哪名隊員?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰直角三角形的直角頂點在第一象限,頂點、分別在函數(shù)圖像的兩個分支上,且經(jīng)過原點,與軸相交于點,連接,已知平分四邊形的面積.
(1)證明::
(2)求點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在李村河治理工程實驗過程中,某工程隊接受一項開挖水渠的工程,所需天數(shù)y(天)與每天完成的工程量x(m/天)的函數(shù)關(guān)系圖象如圖所示,是雙曲線的一部分.
(1)請根據(jù)題意,求y與x之間的函數(shù)表達式;
(2)若該工程隊有2臺挖掘機,每臺挖掘機每天能夠開挖水渠15米,問該工程隊需用多少天才能完成此項任務(wù)?
(3)如果為了防汛工作的緊急需要,必須在一個月內(nèi)(按30天計算)完成任務(wù),那么每天至少要完成多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是一個在平面直角坐標系中從原點開始的回形圖,其中回形通道的寬和OA的長都是1.
(1)觀察圖形填寫表格:
點 | 坐標 | 所在象限或坐標軸 |
A | ||
B | ||
C | ||
D | ||
E | ||
F |
(2)在圖上將回形圖繼續(xù)畫下去(至少再畫出4個拐點);
(3)說出回形圖中位于第一象限的拐點的橫坐標與縱坐標之間的關(guān)系;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=mx2﹣5mx+1(m為常數(shù),m>0),設(shè)該函數(shù)的圖象與y軸交于點A,該圖象上的一點B與點A關(guān)于該函數(shù)圖象的對稱軸對稱.
(1)求點A,B的坐標;
(2)點O為坐標原點,點M為該函數(shù)圖象的對稱軸上一動點,求當M運動到何處時,△MAO的周長最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖.矩形ABCD的對角線相交于點O.DE∥AC,CE∥BD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為8 ,求AC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com