10、(x,y)稱為數(shù)對(duì),其中x,y都是任意實(shí)數(shù),定義數(shù)對(duì)的加法、乘法運(yùn)算如下:
(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(x1,y1)•(x2,y2)=(x1x2-y1y2,x1y2+y1x2),則( 。┎怀闪ⅲ
分析:根據(jù)定義數(shù)對(duì)的加法、乘法運(yùn)算,逐一檢驗(yàn).
解答:解:A、由(x2,y2)•(x1,y1
=(x1x2-y1y2,x1y2+y1x2
=(x1,y1)•(x2,y2)可知,乘法交換律成立,A正確;
B、由[(x1,y1)•(x2,y2)]•(x3,y3
=(x1x2-y1y2,x1y2+y1x2)•(x3,y3
=(x1x2x3-y1y2x3-x1y2y3-y1x2y3,x1x2y3-y1y2x3+x1y2x3+y1x2x3
=(x1,y1)•(x2x3-y2y3,x2y3+y2x3)=(x1,y1)•[(x2,y2)•(x3y3)]可知,乘法結(jié)合律成立,B正確;
C、由(x,y)•[(x1,y1)+(x2,y2)]
=(x,y)•(x1+x2,y1+y2
=[x(x1+x2)-y(y1+y2),x(y1+y2)+y(x1+x2)]
=(xx1-yy1,xy1+yx1)+(xx2-yy2,xy2+yx2
=[(x,y)•(x1,y1)]+[(x,y)•(x2,y2)]可知,乘法對(duì)加法的分配律成立,C正確;
D、由(1,0)+[(1,0)•(1,0)]
=(1,0)+(1,0)
=(2,0)≠(2,0)•(2,0)
=[(1,0)+(1,0)•((1,0)+(1,0))]可知,加法對(duì)乘法的分配律不成立,D錯(cuò)誤.
不成立的是D.
故選D.
點(diǎn)評(píng):本題考查了整式的混合運(yùn)算,運(yùn)用了新定義對(duì)幾種運(yùn)算律進(jìn)行檢驗(yàn),還運(yùn)用到了特殊值法解題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:單選題

(x,y)稱為數(shù)對(duì),其中x,y都是任意實(shí)數(shù),定義數(shù)對(duì)的加法、乘法運(yùn)算如下:
(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(x1,y1)•(x2,y2)=(x1x2-y1y2,x1y2+y1x2),則不成立.


  1. A.
    乘法交換律:(x1,y1)•(x2,y2)=(x2,y2)•(x1,y1
  2. B.
    乘法結(jié)合律:(x1,y1)•(x2,y2)•(x3,y3)=(x1,y1)•[(x2,y2),(x3,y3)]
  3. C.
    乘法對(duì)加法的分配律:(x,y)•[(x1,y1)+(x2,y2)]=[(x,y)•(x1,y1))+((x,y)•(x2,y2)]
  4. D.
    加法對(duì)乘法的分配律:(x,y)+[(x1,y1)•(x2,y2)]=[(x,y)+(x1,y1)]•[(x,y)+(x2,y2)]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

(x,y)稱為數(shù)對(duì),其中x,y都是任意實(shí)數(shù),定義數(shù)對(duì)的加法、乘法運(yùn)算如下:
(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(x1,y1)•(x2,y2)=(x1x2-y1y2,x1y2+y1x2),則(  )不成立.
A.乘法交換律:(x1,y1)•(x2,y2)=(x2,y2)•(x1,y1
B.乘法結(jié)合律:(x1,y1)•(x2,y2)•(x3,y3)=(x1,y1)•[(x2,y2),(x3,y3)]
C.乘法對(duì)加法的分配律:(x,y)•[(x1,y1)+(x2,y2)]=[(x,y)•(x1,y1))+((x,y)•(x2,y2)]
D.加法對(duì)乘法的分配律:(x,y)+[(x1,y1)•(x2,y2)]=[(x,y)+(x1,y1)]•[(x,y)+(x2,y2)]

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:1998年第10屆“五羊杯”初中數(shù)學(xué)競(jìng)賽初三試卷(解析版) 題型:選擇題

(x,y)稱為數(shù)對(duì),其中x,y都是任意實(shí)數(shù),定義數(shù)對(duì)的加法、乘法運(yùn)算如下:
(x1,y1)+(x2,y2)=(x1+x2,y1+y2
(x1,y1)•(x2,y2)=(x1x2-y1y2,x1y2+y1x2),則( )不成立.
A.乘法交換律:(x1,y1)•(x2,y2)=(x2,y2)•(x1,y1
B.乘法結(jié)合律:(x1,y1)•(x2,y2)•(x3,y3)=(x1,y1)•[(x2,y2),(x3,y3)]
C.乘法對(duì)加法的分配律:(x,y)•[(x1,y1)+(x2,y2)]=[(x,y)•(x1,y1))+((x,y)•(x2,y2)]
D.加法對(duì)乘法的分配律:(x,y)+[(x1,y1)•(x2,y2)]=[(x,y)+(x1,y1)]•[(x,y)+(x2,y2)]

查看答案和解析>>

同步練習(xí)冊(cè)答案