【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質(zhì),把方程轉(zhuǎn)化為x=a的形式.求解二元一次方程組,把它轉(zhuǎn)化為一元一次方程來解;類似的,求解三元一次方程組,把它轉(zhuǎn)化為解二元一次方程組.求解一元二次方程,把它轉(zhuǎn)化為兩個一元一次方程來解.求解分式方程,把它轉(zhuǎn)化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學(xué)思想轉(zhuǎn)化,把未知轉(zhuǎn)化為已知.
用“轉(zhuǎn)化”的數(shù)學(xué)思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉(zhuǎn)化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉(zhuǎn)化”思想求方程的解;
(3)應(yīng)用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
【答案】(1)-2,1;(2)x=3;(3)4m.
【解析】
(1)因式分解多項式,然后得結(jié)論;
(2)兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,注意驗根;
(3)設(shè)AP的長為xm,根據(jù)勾股定理和BP+CP=10,可列出方程,由于方程含有根號,兩邊平方,把無理方程轉(zhuǎn)化為整式方程,求解,
解:(1),
,
所以或或
,,;
故答案為:,1;
(2),
方程的兩邊平方,得
即
或
,,
當(dāng)時,,
所以不是原方程的解.
所以方程的解是;
(3)因為四邊形是矩形,
所以,
設(shè),則
因為,
,
兩邊平方,得
整理,得
兩邊平方并整理,得
即
所以.
經(jīng)檢驗,是方程的解.
答:的長為.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】溫州市處于東南沿海,夏季經(jīng)常遭受臺風(fēng)襲擊.一次,溫州氣象局測得臺風(fēng)中心在溫州市A的正西方向300千米的B處(如圖),以每小時10千米的速度向東偏南30°的BC方向移動,并檢測到臺風(fēng)中心在移動過程中,溫州市A將受到影響,且距臺風(fēng)中心200千米的范圍是受臺風(fēng)嚴重影響的區(qū)域.則影響溫州市A的時間會持續(xù)多長?( )
A. 5 B. 6 C. 8 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,四邊形,,,,,.
(1)求四邊形的面積;
(2)如圖2,以為坐標原點,以、所在直線為軸、軸建立直角坐標系,點在軸上,若,求的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤中,指針位置固定,三個扇形的面積都相等,且分別標有數(shù)字1,2,3.
(1)小明轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,指針所指扇形中的數(shù)字是奇數(shù)的概率為________;
(2)小明先轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,記錄下指針所指扇形中的數(shù)字;接著再轉(zhuǎn)動轉(zhuǎn)盤一次,當(dāng)轉(zhuǎn)盤停止轉(zhuǎn)動時,再次記錄下指針所指扇形中的數(shù)字,求這兩個數(shù)字之和是3的倍數(shù)的概率(用畫樹狀圖或列表等方法求解)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,□AOBC的頂點A、B、C在⊙O上,過點C作DE∥AB交OA延長線于D點,交OB延長線于點E .
(1)求證:CE是⊙O的切線;
(2)若OA=1,求陰影部分面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小紅想利用陽光下的影長測量學(xué)校旗桿AB的高度.如圖,他在某一時刻在地面上豎直立一個2米長的標桿CD,測得其影長DE=0.4米.
(1)請在圖中畫出此時旗桿AB在陽光下的投影BF.
(2)如果BF=1.6,求旗桿AB的高.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點A、F、E、C在同一直線上,AB∥CD,∠ABE=∠CDF,AF=CE.
(1)從圖中任找兩組全等三角形;
(2)從(1)中任選一組進行證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△BPC是等邊三角形,BP、CP的延長線分別交AD于點E、F,連接BD、DP,BD與CF相交于點H.給出下列結(jié)論:
①△ABE≌△DCF;②;③DP2=PHPB;④.
其中正確的是____________.(寫出所有正確結(jié)論的序號)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com