【題目】將矩形紙片分別沿兩條不同的直線剪兩刀,可以使剪得的三塊紙片恰能拼成一個等腰三角形(不能有重疊和縫隙).小華的做法是:如圖1所示,在矩形ABCD中,分別取AD、AB、CD的中點P、E、F,并沿直線PE 、PF剪兩刀,所得的三部分可拼成等腰三角形△PMN (如圖2).

(1)在圖3中畫出另一種剪拼成等腰三角形的示意圖

(2)以矩形ABCD的頂點B為原點,BC所在直線為x軸建立平面直角坐標(biāo)系(如圖4),矩形ABCD剪拼后得到等腰三角形△PMN,點P在邊AD上(不與點A、D重合),點M、Nx軸上(點MN的左邊).如果點D的坐標(biāo)為(5,8),直線PM的解析式為y=kx+b,求所有滿足條件的k的值.

【答案】(1)詳見解析;(2),或2.

【解析】

(1)可直接沿AD、CD中點,BC、CD中點剪開;

(2)△MNP是等腰三角形,分①PM=PN,②PM=MN,③PN=MN三種情況取AB、CD的中點E、F,沿PE、PF剪開,拼接成等腰三角形,然后求出相應(yīng)的k值.

(1)如圖1:沿AD、CD中點,BC、CD中點剪開,即可得到一個等腰△PMN;

(2)取AB、CD的中點E、F.

D的坐標(biāo)為(5,8),四邊形ABCD是矩形,

∴E(0,4),F(xiàn)(5,4).

如圖2,若PM=PN,則P(2.5,8).

將點P、E的坐標(biāo)分別代入直線PM的解析式為y=kx+b,得:

,

解得,

如圖3,若PM=MN,則PM=MN=10,所以,EP=5,

∵AE=4,

Rt△APE中,根據(jù)勾股定理知AP==3,

∴P(3,8).

將點P、E的坐標(biāo)分別代入直線PM的解析式為y=kx+b,得:

,

解得,;

如圖4,若PN=MN,則PN=MN=10,

所以,PF=5,

∵DF=4,

Rt△PDF中,根據(jù)勾股定理知PD==3,

∴P(2,8).

將點P、E的坐標(biāo)分別代入直線PM的解析式為y=kx+b,得,

解得,

綜上所述,k=,或2.

故答案是:,或2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知正方形ABCD的邊長為4,點EF分別在AD,DC上,AEDF1,BEAF相交于點G,點HBF的中點,連接GH,則GH的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑圓弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:EDBC;②∠A=EBA;EB平分AED;ED=AB中,一定正確的是( )

A.①②③ B.①②④ C.①③④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知ABC為等邊三角形,P是直線AC上一點,ADBPD,以AD為邊作等邊ADE(D,E在直線AC異側(cè)).

(1)如圖1,若點P在邊AC上,連CD,且∠BDC=150°,則= ;(直接寫結(jié)果)

(2)如圖2,若點PAC延長線上,DEBCF求證:BF=CF;

(3)在圖2中,若∠PBC=15°,AB=,請直接寫出CP的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點是直線上一動點,點在點的下方,且軸,軸上有一點,當(dāng)值最小時,點的坐標(biāo)為___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,的中點,延長線上的一點,

求證;

閱讀下列材料:

如圖,把沿直線平行移動線段的長度,可以變到的位置;

如圖,以為軸把翻折,可以變到的位置;

如圖,以點為中心把旋轉(zhuǎn),可以變到的位置.

像這樣,其中一個三角形是由另一個三角形按平行移動、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

回答下列問題:

在圖中,可以通過平行移動、翻折、旋轉(zhuǎn)中的哪一種方法使變到的位置,

答:________.

指出圖中,線段之間的關(guān)系.

答:________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖像與反比例函數(shù)的圖像交于點,,

(1)求反比例函數(shù)與一次函數(shù)的函數(shù)表達(dá)式

(2)請結(jié)合圖像直接寫出不等式的解集;

(3)若點Px軸上一點,ABP的面積為10,求點P的坐標(biāo),

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,將一塊等腰直角三角板ABC的直角頂點C置于直線l上,圖2是由圖1抽象出的幾何圖形,過AB兩點分別作直線l的垂線,垂足分別為D、E

1ACDCBE全等嗎?說明你的理由.

2)若AD=2DE=3.5,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年5月,從全國旅游景區(qū)質(zhì)量等級評審會上傳來喜訊,我市風(fēng)岡茶海之心、赤水佛光巖”、“仁懷中國酒文化城三個景區(qū)加入國家“4A”級景區(qū).至此,全市“4A”級景區(qū)已達(dá)13個.某旅游公司為了了解我市“4A”級景區(qū)的知名度情況,特對部分市民進(jìn)行現(xiàn)場采訪,根據(jù)市民對13個景區(qū)名字的回答情況,按答數(shù)多少分為熟悉(A),基本了解(B)、略有知曉(C)、知之甚少(D)四類進(jìn)行統(tǒng)計,繪制了一下兩幅統(tǒng)計圖(不完整),請根據(jù)圖中信息解答以下各題:

(1)本次調(diào)查活動的樣本容量是  

(2)調(diào)查中屬于基本了解的市民有  人;

(3)補(bǔ)全條形統(tǒng)計圖;

(4)“略有知曉類占扇形統(tǒng)計圖的圓心角是多少度?知之甚少類市民占被調(diào)查人數(shù)的百分比是多少?

查看答案和解析>>

同步練習(xí)冊答案