若關(guān)于x的方程mx2-(2m-2)x+m=0有實(shí)數(shù)根,則m的取值范圍是
m≤
1
2
m≤
1
2
分析:分類討論:當(dāng)m=0,方程變形為2x=0,一元一次方程有實(shí)數(shù)解;當(dāng)m≠0,根據(jù)判別式的意義得到△=(2m-2)2-4m•m≥0,解得m≤
1
2
,所以m≤
1
2
且m≠0時(shí),方程有兩個(gè)實(shí)數(shù)根,然后綜合兩種情況即可.
解答:解:(1)當(dāng)m=0,方程變形為2x=0,解得x=0;

(2)當(dāng)m≠0,△=(2m-2)2-4m•m≥0,解得m≤
1
2
,即m≤
1
2
且m≠0時(shí),方程有兩個(gè)實(shí)數(shù)根,
綜上所述,當(dāng)m的取值范圍為m≤
1
2
時(shí),方程有實(shí)數(shù)根.
故答案為m≤
1
2
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒(méi)有實(shí)數(shù)根.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程
1
4
x2-2
a
x+(a+1)2=0
有實(shí)根.
(1)求a的值;
(2)若關(guān)于x的方程mx2+(1-m)x-a=0的所有根均為整數(shù),求整數(shù)m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程mx2-3x-4=0有兩個(gè)相等的實(shí)數(shù)根,求m的值并解這個(gè)方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程mx2-6x+1=0只有一個(gè)解,則m的值是
0或9
0或9

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程mx2-10x-5=0有兩個(gè)相等的實(shí)數(shù)根,求m的值并解這個(gè)方程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x的方程mx2-x+m=0(m≠0)的兩根為x1,x2
(1)用含m的代數(shù)式表示
1
x1
+
1
x2
;
(2)若
4
x1
+
4
x2
=16,求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案