如圖,已知四邊形ABCD中,∠D=100°,AC平分∠BCD,且∠ACB=40°,∠BAC=70°.
(1)AD與BC平行嗎?試寫出推理過程;
(2)求∠DAC和∠EAD的度數(shù).
分析:(1)根據(jù)角平分線定義求出∠BCD,求出∠D+∠BCD=180°,根據(jù)平行線的判定推出即可.
(2)根據(jù)平行線的性質(zhì)求出∠DAC,代入∠EAD=180°-∠DAC-∠BAC求出即可.
解答:解:(1)AD∥BC,
理由是:∵AC平分∠BCD,∠ACB=40°,
∴∠BCD=2∠ACB=80°,
∵∠D=100°,
∴∠D+∠BCD=180°,
∴AD∥BC.

(2)∵AD∥BC,∠ACB=40°,
∴∠DAC=∠ACB=40°,
∵∠BAC=70°,
∴∠DAB=∠DAC+∠BAC=40°+70°=110°,
∴∠EAD=180°-∠DAB=180°-110°=70°.
點(diǎn)評(píng):本題考查了平行線性質(zhì)和判定,角平分線定義的應(yīng)用,主要考查學(xué)生的推理能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,已知四邊形ABCD是等腰梯形,AB=DC,AD∥BC,PB=PC.求證:PA=PD.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形ABCD內(nèi)接于⊙O,A是
BDC
的中點(diǎn),AE⊥AC于A,與⊙O及CB精英家教網(wǎng)的延長線分別交于點(diǎn)F、E,且
BF
=
AD
,EM切⊙O于M.
(1)求證:△ADC∽△EBA;
(2)求證:AC2=
1
2
BC•CE;
(3)如果AB=2,EM=3,求cot∠CAD的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•梧州)如圖,已知:AB∥CD,BE⊥AD,垂足為點(diǎn)E,CF⊥AD,垂足為點(diǎn)F,并且AE=DF.
求證:四邊形BECF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖南常德市初中畢業(yè)學(xué)業(yè)考試數(shù)學(xué)試卷 題型:047

如圖,已知四邊形AB∥CD是菱形,DEAB,DFBC.求證△ADE≌△CDF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知四邊形AB∥CD是菱形,DE∥AB,DFBC.求證

 


查看答案和解析>>

同步練習(xí)冊(cè)答案