已知:如圖,內(nèi)接于⊙O, 為⊙O的直徑,, 點上一個動點,連結(jié)、, 相交于點, 過點相交于點,連結(jié).

 

(1)  求證:;

(2)如圖1,若, 求證:

(3) 如圖2,設(shè) , 四邊形的面積為,求之間的關(guān)系式.

 

【答案】

(1) 證明: ∵, 的直徑

         ∴

,

是等腰直角三角形

是等腰直角三角形

 

 

(2)證明:∵

 

的中點

是等腰直角三角形

 

(3)解:

   = (

【解析】(1)根據(jù)PC與CD垂直,由垂直定義得到∠PCD為直角,又AB為圓的直徑,由直徑所對的圓周角為直角得到∠ACB與∠ADB也為直角,根據(jù)同角的余角相等得到∠ACD與∠BCP相等,又AC=BC得到三角形ABC為等腰直角三角形,進而得到∠CAB=45°,根據(jù)同弧所對的圓周角相等得到∠CDP=45°,即三角形DCP為等腰直角三角形,所以CD=CP,利用”SAS“即可得到三角形ACD與三角形BCP全等,根據(jù)全等三角形的對應(yīng)邊相等得到AD=PB;

(2)根據(jù)同弧所對的圓周角相等得到∠ABD=∠ACD,則tan∠ACD=tan=∠ABD,在直角三角形ABD中,由正切函數(shù)定義得到AD等于BD的一半,由(1)得到AD=PB代入比例式得到P為BD中點,即AP為直角三角形ABD斜邊上的中線,則AP=DP,所以三角形ADP為等腰直角三角形,所以∠APD=45°,又∠CDP=45°,得到一對內(nèi)錯角相等,從而得到兩直線平行,得證;

(2)(3)四邊形APBC的面積可以分為三角形ACD和三角形APC的面積之和,而三角形ACD與三角形BCP全等,故四邊形的面積可以等于三角形BCP和三角形APC的面積之和,即三角形ABC的面積減去三角形ABP的面積,而P為BD中點,根據(jù)等底同高得到三角形ABP的面積與三角形ADP的面積相等,從而得到四邊形的面積等于三角形ABC的面積減去三角形ADP的面積,然后由這兩個三角形都為等腰直角三角形且直角邊分別為5和x,利用三角形的面積公式即可表示出y與x的函數(shù)關(guān)系式,同時求出自變量x的范圍.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點的切線與OC的延長線交于點D,∠B=30°,OH=2
3
.請求出:
(1)∠AOC的度數(shù);
(2)線段AD的長(結(jié)果保留根號);
(3)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點的切線與OC的延長線交于點D,∠B=30°,OH=5.請求出:精英家教網(wǎng)
(1)∠AOC的度數(shù);
(2)劣弧AC的長(結(jié)果保留π);
(3)線段AD的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC內(nèi)接于⊙O,OH⊥AC于H,過A點的切線與OC的延長線交于點D,∠B=30°,OH=5
3
.請求出:
(1)∠AOC的度數(shù);
(2)劣弧
AC
的長(結(jié)果保留π);
(3)線段AD的長(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖△ABC內(nèi)接于⊙0,AB為直徑,弦CE⊥AB于F,C是弧AD的中點,連接BD并延長交EC的延長線于點G,連接AD,分別交CE、BC于點P、Q,下列結(jié)論:①∠ABC=∠DBC;②PD=PE:③P是△ACQ的外心;④
BG-AB
AC
是定值,其中正確的是( 。
A、①②③B、①②④
C、①③④D、①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖∠ABC內(nèi)接于⊙O,BD⊥半徑OA于D.BD=4.8,sinC=
45
,則⊙O的半徑為
5
5

查看答案和解析>>

同步練習(xí)冊答案