如圖一,有一個圓O和兩個正六邊形T1,T2.T1的六個頂點都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡要寫出作法;

(2)設(shè)圓O的半徑為R,求T1,T2的邊長(用含R的式子表示);

(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示).

          

圖一                   備用圖                 圖二

 

解: (1) 如圖     

  作法:①在⊙O中做圓心角∠AOB=60°;

        ②在⊙O上依次截取與弧AB相等的弧,得到圓的6個等分點A、B、C、D、E、F;

        ③順次連接各點,六邊形ABCDEF即為所求正六邊形.

     

(2) ∵由(1)知△AOB為等邊三角形,∴T1的半徑為R;  

連接OG,可知Rt△OGB≌Rt△OGA

         ∴∠OGB=30°∴BG=

設(shè)BG為x,由勾股定理有:

解得:

外切正六邊形的邊長為

(3)由圖知:

陰影部分的面積=外切正六邊形的面積-內(nèi)接正六邊形的面積

∵內(nèi)接正六邊形的面積為S△AOB的六倍 ,

 ∴內(nèi)接正六邊形的面積為:   

∵外切正六邊形的面積為S△OGH的六倍 ,

 ∴外切正六邊形的面積為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖一,有一個圓O和兩個正六邊形T1,T2.T1的六個頂點都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).
精英家教網(wǎng)
(1)請你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖一,有一個圓O和兩個正六邊形T1,T2.T1的六個頂點都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江西省師大附中九年級(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖一,有一個圓O和兩個正六邊形T1,T2.T1的六個頂點都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009-2010學(xué)年江西省師大附中九年級(上)月考數(shù)學(xué)試卷(10月份)(解析版) 題型:解答題

如圖一,有一個圓O和兩個正六邊形T1,T2.T1的六個頂點都在圓周上,T2的六條邊都和圓O相切(我們稱T1,T2分別為圓O的內(nèi)接正六邊形和外切正六邊形).

(1)請你在備用圖中畫出圓O的內(nèi)接正六邊形,并簡要寫出作法;
(2)設(shè)圓O的半徑為R,求T1,T2的邊長(用含R的式子表示);
(3)設(shè)圓O的半徑為R,求圖二中陰影部分的面積(用含R的式子表示)

查看答案和解析>>

同步練習(xí)冊答案