【題目】如圖,在菱形ABCD中,∠ABC=60°,AB=1,點P是這個菱形內(nèi)部或邊上的一點,若以點P、B、C為頂點的三角形是等腰三角形,則P、D(P、D兩點不重合)兩點間的最短距離為多少?( )
A. 1 B. C. 2 D. -1
【答案】D
【解析】分析:分三種情形討論①若以邊BC為底.②若以邊PC為底.③若以邊PB為底.分別求出PD的最小值,即可判斷.
詳解::在菱形ABCD中,
∵∠ABC=60°,AB=1,
∴△ABC, △ACD都是等邊三角形,
①若以邊BC為底,則BC垂直平分線上(在菱形的邊及其內(nèi)部)的點滿足題意,此時就轉(zhuǎn)化為了“直線外一點與直線上所有點連線的線段中垂線段最短“,即當(dāng)點P與點A重合時,PD值最小,最小值為1;
②若以邊PB為底, ∠PCB為頂角,以點C為圓心,BC為半徑作圓,則弧BD上的點A與點D均滿足△PBC為等腰三角形,當(dāng)點P與點D重合時,PD最小,顯然不滿足題意,故此種情況不存在;
③若以邊PC為底, ∠PBC為頂角時,以點B為圓心,BC長為半徑作圓,與BD相交于一點,則弧AC(除點C外)上的所有點都滿足△PBC是等腰三角形,當(dāng)點P在BD上時,PD最小.
∵四邊形ABCD是菱形,∠ABC=60°,
∴AB=BC=CD=AD,∠ABC=∠ADC=60°,
∴△ABC,△ADC是等邊三角形,
∴BO=DO=sin60 ×1=,
∴BD=2BO=2×=,
∴PD =BD-BP=-1.
∵-1<1,
∴PD的最小值為-1.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,G是BD上一點,連接CG并延長交BA的延長線于點F,交AD于點E.
(1)求證:△ADG≌△CDG.
(2)若=,EG=4,求AG的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】感知與填空:如圖①,直線,求證:.
閱讀下面的解答過程,并填上適當(dāng)?shù)睦碛桑?/span>
解:過點作直線,
( )
(已知),,
( )
( )
,
( )
應(yīng)用與拓展:如圖②,直線,若.
則 度
方法與實踐:如圖③,直線,若,則 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我市某中學(xué)舉辦“網(wǎng)絡(luò)安全知識答題競賽”,初、高中部根據(jù)初賽成績各選出5名選手組成初中代表隊和高中代表隊參加學(xué)校決賽,兩個隊各選出的5名選手的決賽成績?nèi)鐖D所示.
平均分(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差(分2) | |
初中部 | a | 85 | b | s初中2 |
高中部 | 85 | c | 100 | 160 |
(1)根據(jù)圖示計算出a、b、c的值;
(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù)進行分析,哪個隊的決賽成績較好?
(3)計算初中代表隊決賽成績的方差s初中2,并判斷哪一個代表隊選手成績較為穩(wěn)定.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查學(xué)生對垃圾分類及投放知識的了解情況,從甲、乙兩校各隨機抽取40名學(xué)生進行了相關(guān)知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行了整理、描述和分析。下面給出了部分信息.
a.甲、乙兩校40名學(xué)生成績的頻數(shù)分布統(tǒng)計表如下:
(說明:成績80分及以上為優(yōu)秀,7079分為良好,6069分為合格,60分以下為不合格)
b.甲校成績在70x<80這一組的是:70 70 70 71 72 73 73 73 74 75 76 77 78
c.甲、乙兩校成績的平均分、中位數(shù)、眾數(shù)如下:
根據(jù)以上信息,回答下列問題:
(1)寫出表中n的值;
(2)在此次測試中,某學(xué)生的成績是74分,在他所屬學(xué)校排在前20名,由表中數(shù)據(jù)可知該學(xué)生是___校的學(xué)生(填“甲”或“乙”),理由是___;
(3)假設(shè)乙校800名學(xué)生都參加此次測試,估計成績優(yōu)秀的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將正方形ABCD折疊,使頂點A與CD邊上的一點H重合(H不與端點C,D重合),折痕交AD于點E,交BC于點F,邊AB折疊后與邊BC交于點G,如果正方形ABCD的邊長為1,則△CHG的周長為__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,A(﹣,0)、B(0,1)分別為x軸、y軸上的點,△ABC為等邊三角形,點P(3,a)在第一象限內(nèi),且滿足2S△ABP=S△ABC,則a的值為( 。
A.B.C.D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】初一(1)班針對“你最喜愛的課外活動項目”對全班學(xué)生進行調(diào)查(每名學(xué)生分別選一個活動項目),并根據(jù)調(diào)查結(jié)果列出統(tǒng)計表,繪制成扇形統(tǒng)計圖.
根據(jù)以上信息解決下列問題:
(1) , ;
(2)扇形統(tǒng)計圖中機器人項目所對應(yīng)扇形的圓心角度數(shù)為 ;
(3)從選航模項目的名學(xué)生中隨機選取名學(xué)生參加學(xué)校航模興趣小組訓(xùn)練,請用列舉法(畫樹狀圖或列表)求所選取的名學(xué)生中恰好有名男生、名女生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,將一矩形紙片ABCD沿著EF折疊,CE交AF于點G,過點G作GH∥EF,交線段BE于點H.
①判斷EG與EH是否相等,并說明理由.
②判斷GH是否平分∠AGE,并說明理由.
(2)如圖2,如果將(1)中的已知條件改為折疊三角形紙片ABC,其它條件不變.
①判斷EG與EH是否相等,并說明理由.
②判斷GH是否平分∠AGE,如果平分,請說明理由;如果不平分,請用等式表示∠EGH,∠AGH與∠C的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com