【題目】如圖①,B,C,E是同一直線上的三個點, 四邊形ABCD與四邊形CEFG都是正方形.連接BG,DE.
(1)探究BG與DE之間的數(shù)量關(guān)系, 并證明你的結(jié)論;
(2)當正方形CEFG繞點C在平面內(nèi)順時針轉(zhuǎn)動到如圖②所示的位置時,線段BG和ED有何關(guān)系? 寫出結(jié)論并證明.
【答案】(1)見解析;(2)見解析.
【解析】
(1)猜想BG⊥BD,且BG=DE,延長BG與DE交于H點,用SAS證明△BCG≌△DCE,得出BG=DE,∠CBG=∠CDE,再證明∠DHG=90°,即可得出結(jié)論;
(2)用SAS證明△BCG≌△DCE,得出BG=DE,∠CBG=∠CDE,再根據(jù)對頂角相等和直角三角形兩銳角互余,通過等量代換即可得出結(jié)論.
(1)猜想:BG⊥BD,且BG=DE.證明如下:
延長BG與DE交于H點.
∵ABCD和CEFG都是正方形,
∴BC=DC,GC=EC,∠BCG=∠DCE=90°.
在△BCG和△DCE中,∵BC=DC,∠BCG=∠DCE=90°,GC=EC,
∴△BCG≌△DCE,
∴∠BGC=∠DEC,BG=DE.
又∵∠BGC=∠DGH,∠DEC+∠CDE=90°,
∴∠DGH+∠GDH=90°,
∴∠DHG=90°,
故BG⊥DE,且BG=DE.
(2)BG=DE,BG⊥DE.證明如下:
∵四邊形ABCD、CEFG都是正方形,
∴BC=CD,CG=CE,∠BCD=∠ECG,
∴∠BCG=∠DCE,
∴△BCG≌△DCE(SAS),
∴BG=DE,∠CBG=∠CDE.
又∵∠BPC=∠DPO,∠CBG+∠BPC=90°,
∴∠CDE+∠DPO=90°,
∴∠DOP=90°,
∴BG⊥DE,
∴BG=DE,BG⊥DE.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線與x軸交于A(-1,0),B(3,0)兩點,與y軸交于點C.
(1)求該拋物線的解析式;
(2)如圖①,若點D是拋物線上一動點,設(shè)點D的橫坐標為m(0<m<3),連接CD,BD,BC,AC,當△BCD的面積等于△AOC面積的2倍時,求m的值;
(3)若點N為拋物線對稱軸上一點,請在圖②中探究拋物線上是否存在點M,使得以B,C,M,N為頂點的四邊形是平行四邊形?若存在,請直接寫出所有滿足條件的點M的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2﹣(2k+1)x+4k﹣3=0,
(1)求證:無論k取什么實數(shù)值,該方程總有兩個不相等的實數(shù)根?
(2)當Rt△ABC的斜邊a=,且兩條直角邊的長b和c恰好是這個方程的兩個根時,求k的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為8的等邊△ABC中,點D是AB的中點,點E是平面上一點,且線段DE=2,將線段EB繞點E順時針旋轉(zhuǎn)60得到線段EF,連接AF.
(1)如圖1,當BE=2時,求線段AF的長;
(2)如圖2,求證:AF=CE;
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】.Rt△ABC中,已知∠C=90°,∠B=50°,點D在邊BC上,BD=2CD(圖4).把△ABC繞著點D逆時針旋轉(zhuǎn)m(0<m<180)度后,如果點B恰好落在初始Rt△ABC的邊上,那么m=_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的一條弦,點C是⊙O上一動點,且∠ACB=30°,點E、F分別是AC、BC的中點,直線EF與⊙O交于G、H兩點.若⊙O的半徑為8,則GE+FH的最大值為__________ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,給出如下定義:若點P在圖形M上,點Q在圖形N上,稱線段PQ長度的最小值為圖形M,N的密距,記為d(M,N).特別地,若圖形M,N有公共點,規(guī)定d(M,N)=0.
(1)如圖1,⊙O的半徑為2,
①點A(0,1),B(4,3),則d(A,⊙O)= ,d(B,⊙O)= .
②已知直線L:y=與⊙O的密距d(L,⊙O)=,求b的值.
(2)如圖2,C為x軸正半軸上一點,⊙C的半徑為1,直線y=﹣與x軸交于點D,與y軸交于點E,直線DE與⊙C的密距d(DE,⊙C).請直接寫出圓心C的橫坐標m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2016年,某貧困戶的家庭年人均純收入為2500元,通過政府產(chǎn)業(yè)扶持,發(fā)展了養(yǎng)殖業(yè)后,到2018年,家庭年人均純收入達到了3600元.
(1)求該貧困戶2016年到2018年家庭年人均純收入的年平均增長率;
(2)若年平均增長率保持不變,2019年該貧困戶的家庭年人均純收入是否能達到4200元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(2017甘肅省天水市)△ABC和△DEF是兩個全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的頂點E與△ABC的斜邊BC的中點重合,將△DEF繞點E旋轉(zhuǎn),旋轉(zhuǎn)過程中,線段DE與線段AB相交于點P,線段EF與射線CA相交于點Q.
(1)如圖①,當點Q在線段AC上,且AP=AQ時,求證:△BPE≌△CQE;
(2)如圖②,當點Q在線段CA的延長線上時,求證:△BPE∽△CEQ;并求當BP=2,CQ=9時BC的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com