【題目】已知:如圖,在ABCD中,點EBC的中點,連接AE并延長交DC的延長線于點F,連接BF

(1)求證:△ABE≌△FCE

(2)AFAD,求證:四邊形ABFC是矩形.

【答案】(1)證明見解析;(2)證明見解析.

【解析】

1)根據(jù)平行四邊形性質(zhì)得出ABDC,推出∠1=∠2,根據(jù)AAS證兩三角形全等即可;

2)根據(jù)全等得出ABCF,根據(jù)ABCF得出平行四邊形ABFC,推出BCAF,根據(jù)矩形的判定推出即可.

(1)如圖.

∵四邊形ABCD是平行四邊形,

ABDC ABDF,

∴∠1=∠2,

∵點EBC的中點,

BECE

ABEFCE中,

,

∴△ABE≌△FCE(AAS)

(2)∵△ABE≌△FCE

ABFC,

ABFC,

∴四邊形ABFC是平行四邊形,

ADBC

AFAD,

AFBC

∴四邊形ABFC是矩形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,過點A2,0)的兩條直線l1l2分別交y軸于點B、C,其中點B在原點上方,點C在原點下方,已知AB

1)求點B的坐標(biāo);

2)若OCOB13,求直線l2的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線軸交于A、B兩點(點A在點B的左側(cè)),B的坐標(biāo)為(3,0),軸交于點C(0,-3),頂點為D

(1)求拋物線的解析式及頂點D的坐標(biāo)

(2)聯(lián)結(jié)AC,BC求∠ACB的正切值

(3)點Px軸上一點是否存在點P使得PBDCAB相似,若存在,請求出點P的坐標(biāo);若不存在請說明理由

(4)M是拋物線上一點,N是否存在點N,使得以點A,C,MN為頂點的四邊形是平行四邊形?若存在,請直接寫出點N的坐標(biāo);若不存在請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,排球運動員站在點處練習(xí)發(fā)球,將球從點正上方處發(fā)出,把球看成點,其運行的高度與運行的水平距離滿足關(guān)系式.已知球網(wǎng)與點的水平距離為,高度為,球場的邊界距點的水平距離為

)求的關(guān)系式(不要求寫出自變量的取值范圍).

)球能否越過球網(wǎng)?球會不會出界?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,一次函數(shù)y=x+3的圖象分別與x軸、y軸相交于點AB,且與經(jīng)過點C(2,0)的一次函數(shù)y=kx+b的圖象相交于點D,點D的橫坐標(biāo)為4,直線CDy軸相交于點E

(1)直線CD的函數(shù)表達式為______;(直接寫出結(jié)果)

(2)x軸上求一點P使△PAD為等腰三角形,直接寫出所有滿足條件的點P的坐標(biāo).

(3)若點Q為線段DE上的一個動點,連接BQ.點Q是否存在某個位置,將△BQD沿著直線BQ翻折,使得點D恰好落在直線AB下方的y軸上?若存在,求點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于任意三點,給出如下定義:如果矩形的任何一條邊均與某條坐標(biāo)軸平行或共線,且,,三點都在矩形的內(nèi)部或邊界上,那么稱該矩形為點,,的外延矩形,在點,,所有的外延矩形中,面積最小的矩形稱為點,的最佳外延矩形.例如,圖中的矩形,都是點,,的外延矩形,矩形是點,的最佳外延矩形.

)如圖,點,,為整數(shù)).

如果,則點,,的最佳外延矩形的面積是__________.

如果點,的最佳外延矩形的面積是,且使點在最佳外延矩形的一邊上,請寫出一個符合題意的值__________.

)如圖,已知點在函數(shù)的圖象上,且點的坐標(biāo)為,求點,,的最佳外延矩形的面積的取值范圍以及該面積最小時的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四邊形ABCD是邊長為4的正方形,點P是平面內(nèi)一點.且滿足BP⊥PC,現(xiàn)將點P繞點D順時針旋轉(zhuǎn)90度,則CQ的最大值=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:ABC的周長為30cm,把ABC的邊AC對折,使頂點C和點A重合,折痕交BC邊于點D,交AC邊與點E,連接AD,若AE=4cm,則ABD的周長是(

A. 22cmB. 20cmC. 18cmD. 15cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖平面直角坐標(biāo)系中,已知三點 A0,7),B8,1),Cx,0)且 0<x <8

1)求線段 AB 的長;

2)請用含 x 的代數(shù)式表示 AC+BC 的值;

3)求 AC+BC 的最小值.

查看答案和解析>>

同步練習(xí)冊答案