(2011內(nèi)蒙古赤峰,15,3分)如圖,直線PA過半圓的圓心O,交半圓于A、B
兩點,PC切半圓于點C,已知PC=3,PB=1,則該半圓的半徑為_____________。
根據(jù)切割線定理求得PA的長,進(jìn)一步求得圓的半徑.
解:∵PC切半圓與點C,
∴PC2=PA?PB,
即PA=9,
則AB=9-1=8,
則圓的半徑是4.
故答案為4.
此題考查了切割線定理.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
將一個圓心角是90º的扇形圍成一個圓錐的側(cè)面,則該圓錐的側(cè)面積S
側(cè)和底面
積S
底的關(guān)系是【 】
A.S側(cè)=S底 | B.S側(cè)=2S底 | C.S側(cè)=3S底 | D.S側(cè)=4S底 |
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
(11·大連)(本題9分)如圖9,AB是⊙O的直徑,CD是⊙O的切線,切點
為C,BE⊥CD,垂足為E,連接AC、BC.
(1)△ABC的形狀是______________,理由是_________________;
(2)求證:BC平分∠ABE;
(3)若∠A=60°,OA=2,求CE的長.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分9分)已知⊙
與⊙
相交于
、
兩點,點
在⊙
上,
為⊙
上一點(不與
,
,
重合),直線
與⊙
交于另一點
。
(1)如圖(8),若
是⊙
的直徑,求證:
;
(2)如圖(9),若
是⊙
外一點,求證:
;
(3)如圖(10),若
是⊙
內(nèi)一點,判斷(2)中的結(jié)論是否成立。
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
(11·肇慶)如圖3,四邊形ABCD是圓內(nèi)接四邊形,E是BC延長線上一點,若
∠BAD=105°,則∠DCE的大小是
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
(11·柳州)如圖,⊙
O的半徑為5,直徑
AB⊥
CD,以
B為圓心,
BC長為半徑作
,則
圍成的新月形
ACED(陰影部分)的面積為
_ .
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:單選題
若一個圓柱的底面半徑為1、高為3,則該圓柱的側(cè)面展開圖的面積是【 】
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:解答題
(2011•濱州)如圖,直線PM切⊙O于點M,直線PO交⊙O于A、B兩點,弦AC∥PM,連接OM、BC.
求證:(1)△ABC∽△POM;(2)2OA
2=OP•BC.
查看答案和解析>>
科目:初中數(shù)學(xué)
來源:不詳
題型:填空題
如果圓錐的底面周長是20π,側(cè)面展開后所得的扇形的圓心角為120°.則圓錐的母線是________。
查看答案和解析>>