【題目】如圖1,點(diǎn)O是彈力墻MN上一點(diǎn),魔法棒從OM的位置開始繞點(diǎn)O向ON的位置順時(shí)針旋轉(zhuǎn),當(dāng)轉(zhuǎn)到ON位置時(shí),則從ON位置彈回,繼續(xù)向OM位置旋轉(zhuǎn);當(dāng)轉(zhuǎn)到OM位置時(shí),再從OM的位置彈回,繼續(xù)轉(zhuǎn)向ON位置,…,如此反復(fù).按照這種方式將魔法棒進(jìn)行如下步驟的旋轉(zhuǎn):第1步,從OA0(OA0在OM上)開始旋轉(zhuǎn)α至OA1;第2步,從OA1開始繼續(xù)旋轉(zhuǎn)2α至OA2;第3步,從OA2開始繼續(xù)旋轉(zhuǎn)3α至OA3 , ….

例如:當(dāng)α=30°時(shí),OA1 , OA2 , OA3 , OA4的位置如圖2所示,其中OA3恰好落在ON上,∠A3OA4=120°;
當(dāng)α=20°時(shí),OA1 , OA2 , OA3 , OA4 , OA3的位置如圖3所示,
其中第4步旋轉(zhuǎn)到ON后彈回,即∠A3ON+∠NOA4=80°,而OA3恰好與OA2重合.


(1)若α=35°,在圖4中借助量角器畫出OA2 , OA3 , 其中∠A3OA2的度數(shù)是
(2)若α<30°,且OA4所在的射線平分∠A2OA3 , 在如圖5中畫出OA1 , OA2 , OA3 , OA4并求出α的值
(3)若α<36°,且∠A2OA4=20°,則對應(yīng)的α值是
(4)當(dāng)OAi所在的射線是∠AiOAk(i,j,k是正整數(shù),且OAj與OAk不重合)的平分線時(shí),旋轉(zhuǎn)停止,請?zhí)骄浚涸噯枌τ谌我饨铅粒é恋亩葦?shù)為正整數(shù),且α=180°),旋轉(zhuǎn)是否可以停止?寫出你的探究思路.

【答案】
(1)
(2)

解:如圖所示

∵α<30°,

∴∠A0OA3<180°,4α<180°.

∵OA4平分∠A2OA3,

∴2(180°﹣6α)+=4α,解得:


(3)
(4)

解:對于角α=120°不能停止.理由如下:

無論a為多少度,旋轉(zhuǎn)過若干次后,一定會(huì)出現(xiàn)OAi是∠AiOAK是的角平分線,所以旋轉(zhuǎn)會(huì)停止.

但特殊的,當(dāng)a為120°時(shí),第一次旋轉(zhuǎn)120°,∠MOA1=120°,第二次旋轉(zhuǎn)240°時(shí),與OM重合,第三次旋轉(zhuǎn)360°,又與OM重合,第四次旋轉(zhuǎn)480°時(shí),又與OA1重合,…依此類推,旋轉(zhuǎn)的終邊只會(huì)出現(xiàn)“與OM重合”或“與OA1重合”兩種情況,不會(huì)出第三條射線,所以不會(huì)出現(xiàn)OAi是∠AiOAK是的角平分線這種情況,旋轉(zhuǎn)不會(huì)停止.


【解析】(1)根據(jù)題意,明確每次旋轉(zhuǎn)的角度,計(jì)算即可;
(2)根據(jù)各角的度數(shù),找出等量關(guān)系式,列出方程,求出α的度數(shù)即可;
(3)類比第(2)小題的算法,分三種情況討論,求出α的度數(shù)即可;
(4)無論a為多少度,旋轉(zhuǎn)很多次,總會(huì)出一次OAi是∠AiOAK是的角平分線,但當(dāng)a=120度時(shí),只有兩條射線,不會(huì)出現(xiàn)OAi是∠AiOAK是的角平分線,所以旋轉(zhuǎn)會(huì)中止.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+c的對稱軸是x=﹣1.且過點(diǎn)(0.5,0),有下列結(jié)論:

abc0; a﹣2b+4c=0; 25a﹣10b+4c=03b+2c0;a﹣b≥m(am-b).

其中所有正確的結(jié)論是(

A. ①②③ B. ①③④ C. ①②③⑤ D. ①③⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知在RtABC中,∠C=90°,A=30°,在直線AC上找點(diǎn)P,使ABP是等腰三角形,則∠APB的度數(shù)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在高速公路上,從3千米處開始,每隔4千米設(shè)置一個(gè)限速標(biāo)志牌,而且從10千米處開始,每隔9千米設(shè)置一個(gè)速度監(jiān)控儀,剛好在19千米處同時(shí)經(jīng)過這兩種標(biāo)志.則第三次同時(shí)經(jīng)過這兩種標(biāo)志的地點(diǎn)的千米數(shù)為( 。

A.32B.55C.91D.127

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,數(shù)軸上A,B兩點(diǎn)對應(yīng)的有理數(shù)分別為10和15,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),點(diǎn)Q同時(shí)從原點(diǎn)O出發(fā),以每秒2個(gè)單位長度的速度沿?cái)?shù)軸正方向運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)0<t<5時(shí),用含t的式子表示BP,AQ
(2)當(dāng)t=2時(shí),求PQ的值;
(3)當(dāng)PQ=AB時(shí),求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中運(yùn)算正確的是( 。

A. 4mm=3 B. xy﹣2xy=﹣xy C. 2a3﹣3a3=a3 D. a2bab2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各式中能夠成立的是( 。

A. x+2y2=x2+2xy+4y2 B. x+2y2=x2+4y2

C. xy2=x2﹣2xyy2 D. ab2=(ba2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A,B兩地相距80km,甲、乙兩人沿同一條路從A地到B地.l1,l2分別表示甲、乙兩人離開A地的距離s(km)與時(shí)間t(h)之間的關(guān)系.

(1) 乙先出發(fā)________h后,甲才出發(fā)

(2) 請分別求出甲、乙的速度;并直接寫出l1、、l2的表達(dá)式.

(3) 甲到達(dá)B地時(shí),乙距B地還有多遠(yuǎn)?,乙還需幾小時(shí)到達(dá)B?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1ABC中,CDABD,且BD : AD : CD2 : 3 : 4,

1)求證:AB=AC

2)已知SABC40cm2,如圖2,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)以每秒1cm的速度沿線段BA向點(diǎn)A 運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)N從點(diǎn)A出發(fā)以相同速度沿線段AC向點(diǎn)C運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)整個(gè)運(yùn)動(dòng)都停止. 設(shè)點(diǎn)M運(yùn)動(dòng)的時(shí)間為t(秒),

①若DMN的邊與BC平行,求t的值;

②若點(diǎn)E是邊AC的中點(diǎn),問在點(diǎn)M運(yùn)動(dòng)的過程中,MDE能否成為等腰三角形?若能,求出t的值;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案