如圖,已知二次函數(shù)y=ax2-4x+c的圖象經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9).
(1)求該二次函數(shù)的表達(dá)式;
(2)點(diǎn)P(m,m)與點(diǎn)Q均在該函數(shù)圖象上(其中m>0),且這兩點(diǎn)關(guān)于拋物線的對(duì)稱軸對(duì)稱,求m的值及點(diǎn)Q的坐標(biāo).[拋物線的頂點(diǎn)坐標(biāo):(-
b
2a
,
4ac-b2
4a
)
].
分析:(1)由二次函數(shù)y=ax2-4x+c的圖象經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9),將A和B的坐標(biāo)代入二次函數(shù)解析式中,得到關(guān)于a與c的二元一次方程組,求出方程組的解得到a與c的值,即可確定出二次函數(shù)的解析式;
(2)由P在二次函數(shù)圖象上,將x=m,y=m代入二次函數(shù)解析式中,得到關(guān)于m的方程,求出方程的解得到m的值,確定出P的坐標(biāo),然后求出二次函數(shù)的對(duì)稱軸,根據(jù)對(duì)稱性即可得到Q的坐標(biāo).
解答:解:(1)∵二次函數(shù)y=ax2-4x+c的圖象經(jīng)過(guò)點(diǎn)A(-1,-1)和點(diǎn)B(3,-9),
∴將A和B兩點(diǎn)代入二次函數(shù)解析式得:
a+4+c=-1①
9a-12+c=-9②
,
②-①得:8a-16=-8,解得:a=1,
將a=1代入①得:1+4+c=-1,解得:c=-6,
則二次函數(shù)解析式為y=x2-4x-6;

(2)∵P(m,m)拋物線圖象上,
∴將x=m,y=m代入拋物線解析式得:m=m2-4m-6,
解得:m1=6,m2=-1(m>0,故舍去),
則m=6,
∴P的坐標(biāo)為(6,6),
又拋物線的對(duì)稱軸為x=2,Q與P關(guān)于x=2對(duì)稱,
則Q的坐標(biāo)為(-2,6).
點(diǎn)評(píng):此題考查了利用待定系數(shù)法求二次函數(shù)的解析式,以及二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征,熟練掌握待定系數(shù)法是解本題第一問(wèn)的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,1),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(
5
2
,
13
4
),B點(diǎn)在y軸上,直線與x軸的交點(diǎn)為F,P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)P作x軸的垂線與這個(gè)二次函數(shù)的圖象交于E點(diǎn).
(1)求k,m的值及這個(gè)二次函數(shù)的解析式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),在線段AB上是否存在點(diǎn)P,使得以點(diǎn)P、E、D為頂點(diǎn)的精英家教網(wǎng)三角形與△BOF相似?若存在,請(qǐng)求出P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知二次函數(shù)y=ax2+bx+3(a≠0)的圖象與x軸交于點(diǎn)A(-1,0)和點(diǎn)B(3,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),與y軸交于點(diǎn)C.
(1)求此二次函數(shù)的解析式,并寫出它的對(duì)稱軸;
(2)若直線l:y=kx(k>0)與線段BC交于點(diǎn)D(不與點(diǎn)B,C重合),則是否存在這樣的直線l,使得以B,O,D為頂點(diǎn)的三角形與△BAC相似?若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)若直線l′:y=m與該拋物線交于M、N兩點(diǎn),且以MN為直徑的圓與x軸相切,求該圓半徑的長(zhǎng)度.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,0),直線y=x+b與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中點(diǎn)A的坐標(biāo)為(3,4),點(diǎn)B在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與A、B不重合),過(guò)點(diǎn)P作x軸的垂線與該二次函數(shù)的圖象交于點(diǎn)E.
(1)求b的值及這個(gè)二次函數(shù)的關(guān)系式;
(2)設(shè)線段PE的長(zhǎng)為h,點(diǎn)P的橫坐標(biāo)為x,求h與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)若點(diǎn)D為直線AB與該二次函數(shù)的圖象對(duì)稱軸的交點(diǎn),則四邊形DCEP能否構(gòu)成平行四邊形?如果能,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.
(4)以PE為直徑的圓能否與y軸相切?如果能,請(qǐng)求出點(diǎn)P的坐標(biāo);如果不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知二次函數(shù)y=ax2-4x+c的圖象與坐標(biāo)軸交于點(diǎn)A(-1,0)和點(diǎn)C(0,-5).
(1)求該二次函數(shù)的解析式和它與x軸的另一個(gè)交點(diǎn)B的坐標(biāo).
(2)在上面所求二次函數(shù)的對(duì)稱軸上存在一點(diǎn)P(2,-2),連接OP,找出x軸上所有點(diǎn)M的坐標(biāo),使得△OPM是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•衡水一模)如圖,已知二次函數(shù)y=-
12
x2+bx+c
的圖象經(jīng)過(guò)A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)設(shè)該二次函數(shù)圖象的對(duì)稱軸與x軸交于點(diǎn)C,連接BA、BC,求△ABC的面積;
(3)若拋物線的頂點(diǎn)為D,在y軸上是否存在一點(diǎn)P,使得△PAD的周長(zhǎng)最?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案