【題目】如果一個正多邊形的一個外角為30°,那么這個正多邊形的邊數(shù)是(
A.6
B.11
C.12
D.18

【答案】C
【解析】解:這個正多邊形的邊數(shù):360°÷30°=12,
故選C.
【考點精析】解答此題的關(guān)鍵在于理解多邊形內(nèi)角與外角的相關(guān)知識,掌握多邊形的內(nèi)角和定理:n邊形的內(nèi)角和等于(n-2)180°.多邊形的外角和定理:任意多邊形的外角和等于360°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線的部分圖象,其頂點坐標(biāo)為(1n),且與x軸的一個交點在點(03)(0,4)之間.則下列結(jié)論:;;一元二次方程有兩個不相等的實數(shù)根.其中正確結(jié)論的個數(shù)是

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知a、b互為倒數(shù),c、d互為相反數(shù),則代數(shù)式c+d﹣ab的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式5+3x>14的解集是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,過A(2, 0), C(0, 6)兩點的拋物線y=-x2axbx軸交于另一點B,點D是拋物線的頂點.

(1)求a、b的值;

(2)點Px軸上的一個動點,過P作直線l//AC交拋物線于點Q.隨著點P的運(yùn)動,若以A、P、Q、C為頂點的四邊形是平行四邊形,請直接寫出符合條件的點Q的坐標(biāo);

(3)在直線AC上是否存在一點M,使BDM的周長最小,若存在,請找出點M并求出點M的坐標(biāo).若不存在,請說明理由。

備用圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】據(jù)中新社報道:2018 年黑龍江省糧食產(chǎn)量將達(dá)到 27 000 000 噸,用科學(xué)記數(shù)法表示這個糧食產(chǎn)量為__噸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:a是不為1的有理數(shù),我們把 稱為a的差倒數(shù).
如:2的差倒數(shù)是 =﹣1,﹣1的差倒數(shù)是 =
已知a1=﹣ ,
(1)a2是a1的差倒數(shù),則a2=
(2)a3是a2的差倒數(shù),則a3=;
(3)a4是a3的差倒數(shù),則a4= ,

依此類推,則a2013=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料并解決有關(guān)問題:
我們知道:|x|= .現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,現(xiàn)在我們可以用這一結(jié)論來化簡含有絕對值的代數(shù)式,如化簡代數(shù)式|x+1|+|x﹣2|時,可令x+1=0和x﹣2=0,分別求得x=﹣1,x=2(稱﹣1,2分別為|x+1|與|x﹣2|的零點值).在實數(shù)范圍內(nèi),零點值x=﹣1和,x=2可將全體實數(shù)分成不重復(fù)且不遺漏的如下3種情況:
①x<﹣1;②﹣1≤x<2;③x≥2.
從而化簡代數(shù)式|x+1|+|x﹣2|可分以下3種情況:
①當(dāng)x<﹣1時,原式=﹣(x+1)﹣(x﹣2)=﹣2x+1;
②當(dāng)﹣1≤x<2時,原式=x+1﹣(x﹣2)=3;
③當(dāng)x≥2時,原式=x+1+x﹣2=2x﹣1.綜上討論,原式=
通過以上閱讀,請你解決以下問題:
(1)化簡代數(shù)式|x+2|+|x﹣4|.
(2)求|x﹣1|﹣4|x+1|的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點O是△ABC邊AC上一個動點,過O作直線MN∥BC.設(shè)MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(Ⅰ)求證:OE=OF;
(Ⅱ)若CE=8,CF=6,求OC的長;

查看答案和解析>>

同步練習(xí)冊答案