計算和化簡求值
(1)已知:|a|=3,b2=4,ab<0,求a-b的值.
(2)已知:A-2B=7a2-7ab,且B=-4a2+6ab+7,
①求A等于多少?
②若|a+1|+(b-2)2=0,求A的值.
(3)已知A=by2-ay-1,B=2y2+3ay-10y-1,且多項式2A-B的值與字母y的取值無關,求(2a2b+2ab2)-[2(a2b-1)+3ab2+2]的值
解:(1)∵|a|=3,b2=4,
∴a=±3,b=±2,
∵ab<0,
∴a=3,b=-2或者a=-3,b=2,
∴a-b=5或者-5;
(2)①∵A-2B=7a2-7ab,B=-4a2+6ab+7,
∴A=7a2-7ab+2(-4a2+6ab+7)=-a2+5ab+14,
②∵|a+1|+(b-2)2=0,
∴a+1=0,b-2=0,
∴a=-1,b=2,
當a=-1,b=2時,A=-1+5×(-1)×2+14=3;
(3)∵2A-B=(2b-2)y2+(10-5a)y-1;
又∵與y無關,
∴2b-2=0,10-5a=0,
∴b=1,a=2;
又原式=2a2b+2ab2-2a2b+2-3ab2-2=-ab2,
當b=1,a=2時,
原式=-2×12=-2.
分析:(1)先根據(jù)平方根、絕對值的概念,求出a、b,再把a、b的值代入a-b中計算即可;
(2)根據(jù)題意得A=7a2-7ab+2(-4a2+6ab+7),化簡即可求A,再根據(jù)兩個非負數(shù)的和等于0,可求出a、b的值,然后把a、b的值代入A,計算即可;
(3)先計算2A-B,化簡,由于多項式2A-B的值與字母y的取值無關,那么就是說所有含有y的任何次冪的系數(shù)和都等于0,從而可求a、b的值,再把a、b的值代入化簡后的代數(shù)式,計算即可.
點評:本題考查了整式的化簡求值、非負數(shù)的性質(zhì)、絕對值、平方根的知識.整式的加減運算實際上就是去括號、合并同類項,這是各地中考的常考點.