【題目】已知函數(shù),下列說(shuō)法:方程必有實(shí)數(shù)根;若移動(dòng)函數(shù)圖象使其經(jīng)過(guò)原點(diǎn),則只能將圖象向右移動(dòng)個(gè)單位;當(dāng)時(shí),拋物線頂點(diǎn)在第三象限;,則當(dāng)時(shí),隨著的增大而增大,其中正確的序號(hào)是________

【答案】①③

【解析】

把函數(shù)解析式化為一般式,再結(jié)合方程、函數(shù)圖象等進(jìn)行判斷即可.

y=k(x+1)(x-)=k+(k-3)x-3,

∴方程k(x+1)(x-)=-3可化為k+(k-3)x-3=-3,即k+(k-3)x=0,該方程有實(shí)數(shù)根,故①正確;

當(dāng)函數(shù)圖象向上平移3個(gè)單位時(shí),解析式為y=k+(k-3)x,則其圖象過(guò)原點(diǎn),故②不正確;

y=k+(k-3)x-3中,令x=3可得y=-3,

當(dāng)k>3時(shí),其對(duì)稱軸為x=-<0,且過(guò)(0,-3)點(diǎn),此時(shí)其頂點(diǎn)坐標(biāo)在第三象限,故③正確;

當(dāng)k<0時(shí),拋物線開(kāi)口向下,且對(duì)稱軸在y軸的左側(cè),但無(wú)法確定-1的大小關(guān)系,當(dāng)<-1k>-3時(shí),當(dāng)時(shí),不隨著的增大而增大故④不正確; 綜上可知正確的是①③,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在菱形中,,,相交于點(diǎn)

求邊的長(zhǎng);

如圖,將一個(gè)足夠大的直角三角板角的頂點(diǎn)放在菱形的頂點(diǎn)處,繞點(diǎn)左右旋轉(zhuǎn),其中三角板角的兩邊分別與邊,相交于點(diǎn),連接相交于點(diǎn)

判斷是哪一種特殊三角形,并說(shuō)明理由;

旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)為邊的四等分點(diǎn)時(shí),求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:

若一個(gè)整數(shù)能表示成a2+b2ab是整數(shù))的形式,則稱這個(gè)數(shù)為平和數(shù),例如5平和數(shù),因?yàn)?/span>522+1,再如,Mx2+2xy+2y2=(x+y2+y2x, y是整數(shù)),我們稱M也是平和數(shù)

1)請(qǐng)你寫(xiě)一個(gè)小于5平和數(shù),并判斷34是否為平和數(shù)

2)已知Sx2+9y2+6x6y+kxy是整數(shù),k是常數(shù),要使S平和數(shù),試求出符合條件的一個(gè)k值,并說(shuō)明理由.

3)如果數(shù)mn都是平和數(shù),試說(shuō)明也是平和數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平行四邊形中,、分別是邊、的中點(diǎn),分別交、、.請(qǐng)判斷下列結(jié)論:;.其中正確的結(jié)論有(

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】選取二次三項(xiàng)式中的兩項(xiàng),配成完全平方式的過(guò)程叫做配方.例如

選取二次項(xiàng)和一次項(xiàng)配方:

選取二次項(xiàng)和常數(shù)項(xiàng)配方:,或;

選取一次項(xiàng)和常數(shù)項(xiàng)配方:

根據(jù)上述材料,解決下面問(wèn)題:

寫(xiě)出的兩種不同形式的配方;

,求的值;

若關(guān)于的代數(shù)式是完全平方式,求的值;

用配方法證明:無(wú)論取什么實(shí)數(shù)時(shí),總有恒成立.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮進(jìn)行百米賽跑,小明比小亮跑得快,如果兩人同時(shí)起跑,小明肯定贏,現(xiàn)在小明讓小亮先跑若干米,圖中,分別表示兩人的路程與小明追趕時(shí)間的關(guān)系.

1)哪條線表示小明的路程與時(shí)間之間的關(guān)系?

2)小明讓小亮先跑了多少米?

3)誰(shuí)將贏得這場(chǎng)比賽?

4對(duì)應(yīng)的一次函數(shù)表達(dá)式中,一次項(xiàng)系數(shù)是多少?它的實(shí)際意義是什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】悅達(dá)汽車4S十一黃金周銷售某種型號(hào)汽車,該型號(hào)汽車的進(jìn)價(jià)為30萬(wàn)元/輛,若黃金周期間銷售量超過(guò)5輛時(shí),每多售出1輛,所有售出的汽車進(jìn)價(jià)均降低0.1萬(wàn)元/輛.根據(jù)市場(chǎng)調(diào)查,黃金周期間銷售量不會(huì)突破30臺(tái).已知該型號(hào)汽車的銷售價(jià)為32萬(wàn)元/輛,悅達(dá)汽車4S店計(jì)劃黃金周期間銷售利潤(rùn)25萬(wàn)元,那么需售出多少輛汽車?(注:銷售利潤(rùn)=銷售價(jià)﹣進(jìn)價(jià))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若數(shù)a使關(guān)于x的分式方程的解為正數(shù),且使關(guān)于y的不等式組的解集為,則符合條件的所有整數(shù)a的和為()

A.10B.12C.14D.16

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市創(chuàng)建綠色發(fā)展模范城市,針對(duì)境內(nèi)長(zhǎng)江段兩種主要污染源:生活污水和沿江工廠污染物排放,分別用生活污水集中處理(下稱甲方案)和沿江工廠轉(zhuǎn)型升級(jí)(下稱乙方案)進(jìn)行治理,若江水污染指數(shù)記為Q,沿江工廠用乙方案進(jìn)行一次性治理(當(dāng)年完工),從當(dāng)年開(kāi)始,所治理的每家工廠一年降低的Q值都以平均值n計(jì)算.第一年有40家工廠用乙方案治理,共使Q值降低了12.經(jīng)過(guò)三年治理,境內(nèi)長(zhǎng)江水質(zhì)明顯改善.

(1)求n的值;

(2)從第二年起,每年用乙方案新治理的工廠數(shù)量比上一年都增加相同的百分?jǐn)?shù)m,三年來(lái)用乙方案治理的工廠數(shù)量共190家,求m的值,并計(jì)算第二年用乙方案新治理的工廠數(shù)量;

(3)該市生活污水用甲方案治理,從第二年起,每年因此降低的Q值比上一年都增加個(gè)相同的數(shù)值a.在(2)的情況下,第二年,用乙方案所治理的工廠合計(jì)降低的Q值與當(dāng)年因甲方案治理降低的Q值相等,第三年,用甲方案使Q值降低了39.5.求第一年用甲方案治理降低的Q值及a的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案