【題目】如圖,∠BAD=∠CAE=90o,AB=AD,AE=AC, AF⊥CF,垂足為F.
(1)若AC=10,求四邊形ABCD的面積;
(2)求證:AC平分∠ECF;
(3)求證:CE=2AF .
【答案】(1)50(2)證明見解析(3)證明見解析
【解析】試題分析:(1)根據(jù)條件證明△ABC≌△ADE,然后四邊形ABCD的面積可轉(zhuǎn)化為等腰直角△ACE的面積,然后利用三角形的面積公式計(jì)算即可;(2)根據(jù)條件證明∠ACB=∠ACE=45°即可;(3))過點(diǎn)A作AG⊥CG,垂足為點(diǎn)G,利用角的平分線的性質(zhì)證得AF=AG,利用直角三角形斜邊上的中線的性質(zhì)和等腰三角形的性質(zhì)證得CG=AG=GE,即可得出結(jié)論.
試題解析:(1)∵∠BAD=∠CAE=90°,
∴∠BAC+∠CAD=∠EAD+∠CAD
∴∠BAC=∠EAD
在△ABC和△ADE中
∴△ABC≌△ADE(SAS)
∵
∴
(2)∵△ACE是等腰直角三角形,
∴∠ACE=∠AEC=45°,
由△ABC≌△ADE得:
∠ACB=∠AEC=45°,
∴∠ACB=∠ACE,
∴AC平分∠ECF
(3)過點(diǎn)A作AG⊥CG,垂足為點(diǎn)G
∵AC平分∠ECF,AF⊥CB,
∴AF=AG,
又∵AC=AE,
∴∠CAG=∠EAG=45°,
∴∠CAG=∠EAG=∠ACE=∠AEC=45°,
∴CG=AG=GE,
∴CE=2AG,
∴CE="2AF"
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為﹣7,點(diǎn)B表示的數(shù)為5,點(diǎn)C到點(diǎn)A,點(diǎn)B的距離相等,動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向右勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t(t>0)秒.
(1)點(diǎn)C表示的數(shù)是 ;
(2)求當(dāng)t等于多少秒時(shí),點(diǎn)P到達(dá)點(diǎn)B處;
(3)點(diǎn)P表示的數(shù)是 (用含有t的代數(shù)式表示);
(4)求當(dāng)t等于多少秒時(shí),PC之間的距離為2個(gè)單位長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在學(xué)習(xí)代數(shù)式的值時(shí),介紹了計(jì)算程序中的框圖:用“”表示數(shù)據(jù)輸入、輸出框;用“”表示數(shù)據(jù)處理和運(yùn)算框;用“”表示數(shù)據(jù)判斷框(根據(jù)條件決定執(zhí)行兩條路徑中的某一條).按圖所示的程序計(jì)算(輸入的為正整數(shù)).
例如:輸入,結(jié)果依次為、、、、,即運(yùn)算循環(huán)次(第次計(jì)算結(jié)果為)結(jié)束.
(1)輸入,結(jié)果依次為、___________________、、、、、.
(依次填入循環(huán)計(jì)算所缺的幾次結(jié)果)
(2)輸入,運(yùn)算循環(huán)__________次結(jié)束.
(3)輸入正整數(shù),經(jīng)過次運(yùn)算結(jié)束,試求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn)坐標(biāo)為(-2,0),則下列說法:①y隨x的增大而減小;②關(guān)于x的方程kx+b=0的解為x=-2;③kx+b>0的解集是x>-2;④b<0.其中正確的有__________.(填序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,一條直線經(jīng)過點(diǎn)A(1,3)和B(2,5).求:
(1)這個(gè)一次函數(shù)的解析式.
(2)當(dāng)x=﹣3時(shí),y的值.
(3)求此一次函數(shù)與x軸、y軸的交點(diǎn)坐標(biāo)及其圖像與兩坐標(biāo)軸圍成的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)圖中給出的信息,解答下列問題:
(1)放入一個(gè)小球水面升高 ,,放入一個(gè)大球水面升高 ;
(2)如果要使水面上升到50,應(yīng)放入大球、小球各多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有4張卡片,卡片上分別標(biāo)有數(shù)字1、﹣2、﹣3、4,它們除了標(biāo)有的數(shù)字不同之外再也沒有其它區(qū)別,小芳從盒子中隨機(jī)抽取一張卡片.
(1)求小芳抽到負(fù)數(shù)的概率;
(2)若小明再?gòu)氖S嗟娜龔埧ㄆ须S機(jī)抽取一張,請(qǐng)你用樹狀圖或列表法,求小明和小芳兩人均抽到負(fù)數(shù)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c,OA=OC,下列關(guān)系中正確的是( )
A.ac+1=b
B.ab+1=c
C.bc+1=a
D.
+1=c
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖(1),已知:在△ABC中,∠BAC=90°,AB=AC,直線m經(jīng)過點(diǎn)A,BD⊥直線m, CE⊥直線m,垂足分別為點(diǎn)D、E.證明:DE=BD+CE.
(2) 如圖(2),將(1)中的條件改為:在△ABC中,AB=AC,D、A、E三點(diǎn)都在直線m上,并且有∠BDA=∠AEC=∠BAC=,其中為任意銳角或鈍角.請(qǐng)問結(jié)論DE=BD+CE是否成立?如成立,請(qǐng)你給出證明;若不成立,請(qǐng)說明理由.
(3)拓展與應(yīng)用:如圖(3),D、E是D、A、E三點(diǎn)所在直線m上的兩動(dòng)點(diǎn)(D、A、E三點(diǎn)互不重合),點(diǎn)F為∠BAC平分線上的一點(diǎn),且△ABF和△ACF均為等邊三角形,連接BD、CE,若∠BDA=∠AEC=∠BAC,試判斷△DEF的形狀.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com