【題目】如圖,△ABC為等腰直角三角形,∠BCA=90°,AC=BC,點(diǎn)M、N在斜邊AB上,且∠MCN=45°,試探究線段AM,,MN,BN之間的關(guān)系,并說(shuō)明理由。.
【答案】見解析
【解析】
如圖,過(guò)點(diǎn)A作AD⊥AB,且AD=BN.只要證明△ADC≌△BNC,推出CD=CN,∠ACD=∠BCN,再證明△MDC≌△MNC,可得MD=MN,由此即可解決問(wèn)題.
解:BN2+AM2=MN2.理由如下:
如圖,過(guò)點(diǎn)A作AD⊥AB,且AD=BN,
∵AD=BN,∠DAC=∠B=45°,AC=BC,
∴△ADC≌△BNC,
∴CD=CN,∠ACD=∠BCN,
∵∠MCN=45°,
∴∠DCA+∠ACM=∠ACM+∠BCN=45°
∴∠MCD=∠NCM,
∴△MDC≌△MNC(SAS),
∴MD=MN,
在Rt△MDA中,AD2+AM2=DM2,
∴BN2+AM2=MN2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上每相鄰兩點(diǎn)間的距離為一個(gè)單位長(zhǎng)度.點(diǎn)A、B、C、D對(duì)應(yīng)的數(shù)分別是a、b、c、d,且d﹣3a=20.
(1)a= ,b= ,c= .
(2)點(diǎn)A以2個(gè)單位/秒的速度沿著數(shù)軸的正方向運(yùn)動(dòng),1秒后點(diǎn)B以4個(gè)單位/秒的速度也沿著數(shù)軸的正方向運(yùn)動(dòng).當(dāng)點(diǎn)B到達(dá)D點(diǎn)處立刻返回,返回時(shí),點(diǎn)A與點(diǎn)B在數(shù)軸的某點(diǎn)處相遇,求這個(gè)點(diǎn)對(duì)應(yīng)的數(shù).
(3)如果A、C兩點(diǎn)分別以2個(gè)單位/秒和3個(gè)單位/秒的速度同時(shí)向數(shù)軸的負(fù)方向運(yùn)動(dòng),同時(shí),點(diǎn)B從圖上的位置出發(fā)向數(shù)軸的正方向以1個(gè)單位/秒的速度運(yùn)動(dòng),當(dāng)滿足AB+AC=AD時(shí),點(diǎn)A對(duì)應(yīng)的數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(m,0),B(n,0),C(﹣1,2),且滿足式|m+2|+(m+n﹣2)2=0.
(1)求出m,n的值.
(2)①在x軸的正半軸上存在一點(diǎn)M,使△COM的面積等于△ABC的面積的一半,求出點(diǎn)M的坐標(biāo);
②在坐標(biāo)軸的其它位置是否存在點(diǎn)M,使△COM的面積等于△ABC的面積的一半仍然成立,若存在,請(qǐng)直接在所給的橫線上寫出符合條件的點(diǎn)M的坐標(biāo);
(3)如圖2,過(guò)點(diǎn)C作CD⊥y軸交y軸于點(diǎn)D,點(diǎn)P為線段CD延長(zhǎng)線上一動(dòng)點(diǎn),連接OP,OE平分∠AOP,OF⊥OE,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),的值是否會(huì)改變?若不變,求其值;若改變,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在長(zhǎng)度為1個(gè)單位長(zhǎng)度的小正方形組成的正方形中,點(diǎn)A、B、C在小正方形的頂點(diǎn)上.
(1)在圖中畫出與△ABC關(guān)于直線l成軸對(duì)稱的△A′B′C′;
(2)三角形ABC的面積為 ;
(3)以AC為邊作與△ABC全等的三角形(頂點(diǎn)在格點(diǎn)上,不包括△ABC),可作出 個(gè);
(4)在直線l上找一點(diǎn)P,使PA+PB的長(zhǎng)最短.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的弦CD與直徑AB垂直于F,點(diǎn)E在CD上,且AE=CE.
(1)求證:CA2=CE CD;
(2)已知CA=5,EC=3,求sin∠EAF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,O是AB上一點(diǎn), ⊙O與BC相切于點(diǎn)E,交AB于點(diǎn)F,連接AE,若AF=2BF,則∠CAE的度數(shù)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,中,與的平分線交于點(diǎn),過(guò)點(diǎn)作交于點(diǎn),交于點(diǎn),那么下列結(jié)論,①是等腰三角形;②;③若, ; ④.其中正確的有( )
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形OABC是正方形,點(diǎn)A的坐標(biāo)是(4,0),P為邊AB上一點(diǎn),∠CPB=60°,沿CP折疊正方形OABC,折疊后,點(diǎn)B落在平面內(nèi)的點(diǎn)B′處,則點(diǎn)B′的坐標(biāo)為( )
A. (2,2) B. (,2-) C. (2,4-2) D. (,4-2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一座拋物線形拱橋,在正常水位時(shí)水面AB的寬為20m,如果水位上升3m時(shí),水面CD的寬是10m.
(1)建立如圖所示的直角坐標(biāo)系,求此拋物線的解析式;
(2)現(xiàn)有一輛載有救援物資的貨車從甲地出發(fā)需經(jīng)過(guò)此橋開往乙地,已知甲地距此橋280km(橋長(zhǎng)忽略不計(jì)).貨車正以每小時(shí)40km的速度開往乙地,當(dāng)行駛1小時(shí)時(shí),忽然接到緊急通知:前方連降暴雨,造成水位以每小時(shí)0.25m的速度持續(xù)上漲(貨車接到通知時(shí)水位在CD處,當(dāng)水位達(dá)到橋拱最高點(diǎn)O時(shí),禁止車輛通行),試問(wèn):如果貨車按原來(lái)速度行駛,能否安全通過(guò)此橋?若能,請(qǐng)說(shuō)明理由;若不能,要使貨車安全通過(guò)此橋,速度應(yīng)超過(guò)每小時(shí)多少千米?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com