【題目】下面是小蕓設(shè)計(jì)的“過圓外一點(diǎn)作已知圓的切線”的尺規(guī)作圖過程.

已知:⊙O 及⊙O 外一點(diǎn) P

求作:⊙O 的一條切線,使這條切線經(jīng)過點(diǎn) P

作法:①連接 OP,作 OP 的垂直平分線 l,交 OP 于點(diǎn) A;

②以 A 為圓心,AO 為半徑作圓,交⊙O 于點(diǎn) M;

③作直線 PM,則直線 PM 即為⊙O 的切線.

根據(jù)小蕓設(shè)計(jì)的尺規(guī)作圖過程,

1)使用直尺和圓規(guī),補(bǔ)全圖形;(保留作圖痕跡)

2)完成下面的證明:

證明:連接 OM,

由作圖可知,A OP 中點(diǎn),

OP 為⊙A 直徑,

∴∠ 90°( )(填推理的依據(jù))

OMPM

又∵點(diǎn) M 在⊙O 上,

PM 是⊙O 的切線.( )(填推理的依據(jù))

【答案】1)見解析;(2OMP;直徑所對的圓周角是直角;經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.

【解析】

1)根據(jù)作圖步驟利用尺規(guī)作圖可得;
2)①根據(jù)“直徑所對圓周角是直角”可得;②根據(jù)“經(jīng)過半徑的外端點(diǎn),并且垂直于這條半徑的直線是圓的切線”可得.

解:(1)補(bǔ)全圖形,如圖所示:

2)證明:連接OM,
由作圖可知,AOP中點(diǎn),
OP為⊙A直徑,
∴∠OMP90°,(直徑所對的圓周角是直角),
OMPM
又∵點(diǎn)M在⊙O上,
PM是⊙O的切線.(經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線),
故答案為:OMP;直徑所對的圓周角是直角;經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季試銷售成本為每千克18元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元.經(jīng)試銷發(fā)現(xiàn),銷售量ykg)與銷售單價(jià)x(元/kg)符合一次函數(shù)關(guān)系,如圖是yx的函數(shù)關(guān)系圖象.

1)求yx的函數(shù)解析式;

2)設(shè)該水果銷售店試銷草莓獲得的利潤為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數(shù)量是乙每天加工數(shù)量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.

1)求甲、乙兩人每天各加工多少個這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費(fèi)分別是 150 元和 120 元,現(xiàn)有 3000 個這種零件的加工任務(wù),甲單獨(dú)加工一段時間后另有安排,剩余任務(wù)由乙單獨(dú)完成.如果總加工費(fèi)不超過 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩車分別從A,B兩地相向勻速行駛,甲車先出發(fā)兩小時,甲車到達(dá)B地后立即調(diào)頭,并保持原速度與乙車同向行駛,乙車到達(dá)A地后,繼續(xù)保持原速向遠(yuǎn)離B的方向行駛,經(jīng)過一段時間后兩車同時到達(dá)C地,設(shè)兩車之間的距離為y(干米),甲車行駛的時間為x小時,yx之間的函數(shù)圖象如圖所示,則當(dāng)甲車重返A地時,乙車距離C________千米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系xoy中,二次函數(shù)的圖象與x軸的交點(diǎn)為A,B,頂點(diǎn)為C,點(diǎn)D為點(diǎn)C關(guān)于x軸的對稱點(diǎn),過點(diǎn)A作直線lBD于點(diǎn)E,連接BC的直線交直線lK點(diǎn).

1)問:在四邊形ABKD內(nèi)部是否存在點(diǎn)P,使它到四邊形ABKD四邊的距離都相等?

若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由;

2)若M,N分別為直線AD和直線l上的兩個動點(diǎn),連結(jié)DN,NM,MK,如圖2,求DN+NM+MK和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了解某區(qū)初二年級數(shù)學(xué)學(xué)科期末質(zhì)量監(jiān)控情況,進(jìn)行了抽樣調(diào)查,過程如下,請將有關(guān)問題補(bǔ)充完整.

收集數(shù)據(jù):

隨機(jī)抽取甲乙兩所學(xué)校的 20 名學(xué)生的數(shù)學(xué)成績進(jìn)行

91

89

77

86

71

31

97

93

72

91

81

92

85

85

95

88

88

90

44

91

84

93

66

69

76

87

77

82

85

88

90

88

67

88

91

96

68

97

59

88

整理、描述數(shù)據(jù)

按如下數(shù)據(jù)段整理、描述這兩組數(shù)據(jù)

分析數(shù)據(jù)

兩組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)、方差如下表:

a經(jīng)統(tǒng)計(jì),表格中m的值是 ___________

得出結(jié)論:

b若甲學(xué)校有 400 名初二學(xué)生,估計(jì)這次考試成績 80 分以上人數(shù)為____________

c可以推斷出 _______學(xué)校學(xué)生的數(shù)學(xué)水平較高,理由為:①__________________;②_________________.(至少從兩個不同的角度說明推斷的合理性)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2014年鄭州市城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬,為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計(jì)局對全市城鎮(zhèn)企業(yè)民營員工2014年月平均收入隨機(jī)抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)、“2000元~4000“4000元~6000“6000元以上分為四組,進(jìn)行整理,分別用A,BC,D表示,得到下列兩幅不完整的統(tǒng)計(jì)圖.

由圖中所給出的信息解答下列問題:

1)本次抽樣調(diào)查的員工有_____人,在扇形統(tǒng)計(jì)圖中x的值為_____,表示月平均收入在2000元以內(nèi)的部分所對應(yīng)扇形的圓心角的度數(shù)是_____

2)將不完整的條形圖補(bǔ)充完整,并估計(jì)我市2013年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000的約多少人?

3)統(tǒng)計(jì)局根據(jù)抽樣數(shù)據(jù)計(jì)算得到,2013年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結(jié)合上述統(tǒng)計(jì)的數(shù)據(jù),談一談用平均數(shù)反映月收入情況是否合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2013年5月31日是第26個“世界無煙日”,校學(xué)生會書記小明同學(xué)就“戒煙方式”的了解程度對本校九年級學(xué)生進(jìn)行了一次隨機(jī)問卷調(diào)查,如圖是他采集數(shù)據(jù)后繪制的兩幅不完整的統(tǒng)計(jì)圖(A:了解較多,B:不了解,C:了解一點(diǎn),D:非常了解).請你根據(jù)圖中提供的信息解答以下問題:

(1)在扇形統(tǒng)計(jì)圖中的橫線上填寫缺失的數(shù)據(jù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整.

(2)2013年該初中九年級共有學(xué)生400人,按此調(diào)查,可以估計(jì)2013年該初中九年級學(xué)生中對戒煙方式“了解較多”以上的學(xué)生約有多少人?

(3)在問卷調(diào)查中,選擇“A”的是1名男生,1名女生,選擇“D”的有4人且有2男2女.校學(xué)生會要從選擇“A、D”的問卷中,分別抽一名學(xué)生參加活動,請你用列表法或樹狀圖求出恰好是一名男生一名女生的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=mx2+2mx+m-1和直線y=mx+m-1,且m≠0

1)求拋物線的頂點(diǎn)坐標(biāo);

2)試說明拋物線與直線有兩個交點(diǎn);

3)已知點(diǎn)Tt,0),且-1≤t≤1,過點(diǎn)Tx軸的垂線,與拋物線交于點(diǎn)P,與直線交于點(diǎn)Q,當(dāng)0m≤3時,求線段PQ長的最大值.

查看答案和解析>>

同步練習(xí)冊答案