精英家教網(wǎng)如圖,在一只底面半徑為3cm,高為8cm的圓柱體狀水杯中放入一支13cm長的吸管,那么這支吸管露出杯口的長度是
 
分析:根據(jù)半徑我們可以求出直徑,沿底面的半徑切開圓柱,則平面為一個(gè)底為6cm,高為8cm的矩形,根據(jù)勾股定理可以計(jì)算對角線的長度,吸管露出杯口的長度為吸管長減去矩形對角線長.
解答:精英家教網(wǎng)解:由題意知AC=6cm,BC=8cm,AD=13cm
在直角△ABC中,BC=8cm,AC=6cm,
則AB=
AC2+BC2
=10cm,
∴BD=AD-AB=13cm-10cm=3cm.
故答案為:3cm.
點(diǎn)評(píng):本題考查了矩形中勾股定理的運(yùn)用,考查了矩形各內(nèi)角為直角的性質(zhì),本題中正確的根據(jù)勾股定理計(jì)算AB是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

問題探究:
(1)如圖①所示是一個(gè)半徑為
3
,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形ABB′A′,則螞蟻爬行的最短路程即為線段AB′的長);
(2)如圖②所示是一個(gè)底面半徑為
2
3
,母線長為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程;
(3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,壁虎在一座底面半徑為2米,高為4米的油罐的下底邊沿A處,它發(fā)現(xiàn)在自己的正上方油罐上邊緣的B處有一只害蟲,便決定捕捉這只害蟲,為了不引起害蟲的注意,它故意不走直線,而是繞著油罐,沿一條螺旋路線,從背后對害蟲進(jìn)行突然襲擊.結(jié)果,壁虎的偷襲得到成功,獲得了一頓美餐.請問壁虎至少要爬行多少路程才能捕到害蟲?(π取3.14,結(jié)果保留1位小數(shù),可以用計(jì)算器計(jì)算)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

如圖,在一只底面半徑為3cm,高為8cm的圓柱體狀水杯中放入一支13cm長的吸管,那么這支吸管露出杯口的長度是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:第24章《圓》?碱}集(30):24.4 弧長和扇形面積(解析版) 題型:解答題

問題探究:
(1)如圖①所示是一個(gè)半徑為,高為4的圓柱體和它的側(cè)面展開圖,AB是圓柱的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓柱的側(cè)面爬行一周到達(dá)B點(diǎn),求螞蟻爬行的最短路程.(探究思路:將圓柱的側(cè)面沿母線AB剪開,它的側(cè)面展開圖如圖①中的矩形ABB′A′,則螞蟻爬行的最短路程即為線段AB′的長);
(2)如圖②所示是一個(gè)底面半徑為,母線長為4的圓錐和它的側(cè)面展開圖,PA是它的一條母線,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周后回到A點(diǎn),求螞蟻爬行的最短路程;
(3)如圖③所示,在②的條件下,一只螞蟻從A點(diǎn)出發(fā)沿圓錐的側(cè)面爬行一周到達(dá)母線PA上的一點(diǎn),求螞蟻爬行的最短路程.

查看答案和解析>>

同步練習(xí)冊答案