【題目】如圖,在△ABC中,AB=AC,AD是∠BAC的平分線,DE⊥AB,DF⊥AC,垂足分別是E、F,則下列四個結(jié)論: (1) DE=DF; (2) AD上任一點到點C、點B的距離相等; (3) BD=CD,AD⊥BC;(4)∠BDE=∠CDF,其中,正確的有__________個.
【答案】4
【解析】
根據(jù)角平分線上的點到角的兩邊的距離相等可得DE=DF,判斷出(1)正確;根據(jù)線段垂直平分線上的點到線段兩端點的距離相等判斷出(2)正確;根據(jù)等腰三角形三線合一的性質(zhì)判斷出(3)正確;根據(jù)等腰三角形的性質(zhì)及三角形的內(nèi)角和定理,判斷出(4)正確.
∵AD是∠BAC的平分線,DE⊥AB,DF⊥AC,E、F為垂足,
∴DE=DF,(1)正確;
∵AB=AC,AD是∠BAC的平分線,
∴AD⊥BC,BD=CD,
∴線段AD上任一點到點C、點B的距離相等,
∴(2),(3)正確;
∵AB=AC,
∴∠B=∠C;
∵∠BED=∠DFC=90°,
∴∠BDE=∠CDF,(4)正確.
∴正確的結(jié)論為:(1)(2)(3)(4).
故答案為:4.
科目:初中數(shù)學 來源: 題型:
【題目】有四種運算程序如下圖所示,按要求完成下列題:
(1)如圖1,當輸入數(shù)x=-2時,輸出數(shù)y=_______ ;
(2)如圖2,第一個帶?號的運算框內(nèi),應填_______ ;第二個帶?號運算框內(nèi),應填_______ ;
(3)如圖3,當輸入數(shù)x=1時,輸出數(shù)y= _______;
(4)如圖4,當輸出的值y=26,則輸入的值x=_______ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩個反比例函數(shù)y=,y=在第一象限內(nèi)的圖象如圖所示,點P1,P2,P3,....,P99,在反比例函數(shù)y=圖象上,它們的橫坐標分別是x1,x2,x3,....,x99,縱坐標分別是1,3,5,·…·,共99個連續(xù)奇數(shù)過點P1,P2,P3,…,P99分別作y軸的平行線線,與y=的圖象交點依次是Q1(x1,y1),Q2(x2,y2),Q3(x3,y3),.....,Q99(x99,y99),則y99=______
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于三個數(shù)a,b,c,用M{a,b,c}表示這三個數(shù)的平均數(shù),用min{a,b,c}表示這三個數(shù)中最小的數(shù).例如:M{-1,2,3}=,min{-1,2,3}=-1,如果M{3,2x+1,4x-1}=min{2,-x+3,5x},那么x=____________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在鈍角三角形ABC中,把AB=AC,D是BC上一點,AD把ABC分成兩個等腰三角形,則BAC的度數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于任意三點A,B,C,給出如下定義:如果矩形的任何一條邊均與某條坐標軸平行,且A,B,C三點都在矩形的內(nèi)部或邊界上,則稱該矩形為點A,B,C的覆蓋矩形.點A,B,C的所有覆蓋矩形中,面積最小的矩形稱為點A,B,C的最優(yōu)覆蓋矩形.例如,下圖中的矩形A1B1C1D1,A2B2C2D2,AB3C3D3都是點A,B,C的覆蓋矩形,其中矩形AB3C3D3是點A,B,C的最優(yōu)覆蓋矩形.
(1)已知A(2,3),B(5,0),C(, 2).
①當時,點A,B,C的最優(yōu)覆蓋矩形的面積為 ;
②若點A,B,C的最優(yōu)覆蓋矩形的面積為40,則t的值為 ;
(2)已知點D(1,1),點E(, ),其中點E是函數(shù)的圖像上一點,⊙P是點O,D,E的一個面積最小的最優(yōu)覆蓋矩形的外接圓,求出⊙P的半徑r的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示雙曲線y= 與 分別位于第三象限和第二象限,A是y軸上任意一點,B是上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內(nèi),y隨x的增大而減小;②若點B的橫坐標為-3,則C點的坐標為(-3, );③k=4;④△ABC的面積為定值7.正確的有( )
A. I個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,E是BC的中點,連接AE并延長交DC的延長線于點F.
(1)求證:AB=CF;
(2)連接DE,若AD=2AB,求證:DE⊥AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在“創(chuàng)城文明志愿者”活動中,小明和小強兩位同學某天來到城區(qū)中心的十字路口,觀察、統(tǒng)計上午7:00~12:00中闖紅燈的人數(shù),制作了如下兩個數(shù)據(jù)統(tǒng)計圖.
(1)求該天上午7:00~12:00每小時闖紅燈人數(shù)的平均數(shù);
(2)估計一個月(按30天計算)上午7:00~12:00在該十字路口闖紅燈的未成年人約有 人;
(3)根據(jù)統(tǒng)計圖提供的信息向交通管理部門提出一條合理化建議.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com