【題目】同學(xué)們知道:“在直角三角形中,如果一條直角邊等于斜邊的一半,那么這條直角邊所對(duì)的銳角等于30°.”
(1)請(qǐng)寫出它的逆命題 ;該逆命題是一個(gè) 命題(填“真”或“假”)
(2)若你的判斷是真命題請(qǐng)寫出證明過(guò)程(要求畫(huà)圖,并寫出已知,求證).若是假命題,請(qǐng)說(shuō)明理由.
【答案】(1)在直角三角形中,如果一個(gè)銳角等于30度,那么它所對(duì)的直角邊等于斜邊的一半,真;(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.求證:BC=AB.
【解析】
(1)寫出逆命題,并判斷是真命題;
(2)首先寫出已知、求證,畫(huà)出圖形,借助等邊三角形的判定和性質(zhì)證明或借助三角形的外接圓證明.
解:(1)原命題的逆命題為:在直角三角形中,如果一個(gè)銳角等于30度,那么它所對(duì)的直角邊等于斜邊的一半,該逆命題是一個(gè)真命題;
(2)已知,在Rt△ABC中,∠A=30°,∠ACB=90°.
求證:BC=AB.
證明:
證法一:如圖1所示,延長(zhǎng)BC到D,使CD=BC,連接AD,易證AD=AB,∠BAD=60°.
∴△ABD為等邊三角形,
∴AB=BD,
∴BC=CD=AB,即BC=AB.
證法二:如圖2所示,取AB的中點(diǎn)D,
連接DC,有CD=AB=AD=DB,
∴∠DCA=∠A=30°,∠BDC=∠DCA+∠A=60°.
∴△DBC為等邊三角形,
∴BC=DB=AB,即BC=AB.
證法三:如圖3所示,在AB上取一點(diǎn)D,使BD=BC,
∵∠B=60°,
∴△BDC為等邊三角形,
∴∠DCB=60°,∠ACD=90°﹣∠DCB=90°﹣60°=30°=∠A.
∴DC=DA,即有BC=BD=DA=AB,
∴BC=AB.
證法四:如圖3所示,作△ABC的外接圓⊙D,∠C=90°,AB為⊙O的直徑,
連DC,有DB=DC,∠BDC=2∠A=2×30°=60°,
∴△DBC為等邊三角形,
∴BC=DB=DA=AB,即BC=AB.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù) 的圖象交于A(﹣2,1),B(1,n)兩點(diǎn).
(1)試確定上述反比例函數(shù)和一次函數(shù)的表達(dá)式;
(2)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,將兩塊直角三角尺的直角頂點(diǎn)C疊放在一起,若∠DCE=35°,則∠ACB=_____;若∠ACB=140°,則∠DCE=_______;
(2)猜想∠ACB與∠DCE的大小有何特殊關(guān)系,并說(shuō)明理由;
(3)如圖2,若是兩個(gè)同樣的直角三角尺60°銳角的頂點(diǎn)A重合在一起,則∠DAB與∠CAE的大小又有何關(guān)系,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC=2 ,∠BAC=120°,點(diǎn)D,E都在邊BC上,∠DAE=60°.若BD=2CE,則DE的長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,邊長(zhǎng)為1的正方形ABCD中,點(diǎn)E在CB的延長(zhǎng)線上,連接ED交AB于點(diǎn)F,AF=x(0.2≤x≤0.8),EC=y.則在下面函數(shù)圖象中,大致能反映y與x之間函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊地放在一個(gè)底面為長(zhǎng)方形(長(zhǎng)為m,寬為n)的盒子底部(如圖②),盒子底面未被卡片覆蓋的部分用陰影表示.則圖②中兩塊陰影部分的周長(zhǎng)和是( 。
A. 4nB. 4mC. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB與CD相較于點(diǎn)O,OE⊥AB與點(diǎn)O,OB平分∠DOF,∠DOE=62°.
求∠AOC、∠EOF、∠COF的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】直線y=kx+b與反比例函數(shù)y= (x<0)的圖象交于點(diǎn)A(﹣1,m),與x軸交于點(diǎn)B(1,0)
(1)求m的值;
(2)求直線AB的解析式;
(3)若直線x=t(t>1)與直線y=kx+b交于點(diǎn)M,與x軸交于點(diǎn)N,連接AN,S△AMN= ,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,現(xiàn)有5張寫著不同數(shù)字的卡片,請(qǐng)按要求完成下列問(wèn)題:
若從中取出2張卡片,使這2張卡片上數(shù)字的乘積最大,則乘積的最大值是______.
若從中取出2張卡片,使這2張卡片上數(shù)字相除的商最小,則商的最小值是______.
若從中取出4張卡片,請(qǐng)運(yùn)用所學(xué)的計(jì)算方法,寫出兩個(gè)不同的運(yùn)算式,使四個(gè)數(shù)字的計(jì)算結(jié)果為24.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com