如圖,在正方形ABCD中.
(1)若點E、F分別在AB、AD上,且AE=DF.試判斷DE與CF的數(shù)量及位置關系,并說明理由;
(2)若P、Q、M、N是正方形ABCD各邊上的點,PQ與MN相交,且PQ=MN,問PQ⊥MN成立嗎?為什么?

解:(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,
所以△EAD≌△FDC,故DE=CF,
∴∠EDA=∠FCD,
又∵∠DCF+∠DFC=90°,
∴∠ADE+∠DFC=90°,
∴∠DGF=90°
即DE⊥CF.
(2)由點N,Q分別向AB,AD作垂線,
∵PQ=MN,RN=SQ,
∴△MNR≌△QPS(HL),
∴∠PQS=∠MNR,又∠1+∠PQS=90°,
所以∠1+∠MNR=90°,即MN⊥PQ.
分析:(1)由已知易得△DAE≌△CDF,故有DE=CF.
(2)由點N,Q分別向AB,AD作垂線,構造兩直角三角形全等,由角的等量代換,易得QP⊥MN.
點評:解答本題要充分利用正方形的特殊性質.注意在正方形中的特殊三角形的應用,搞清楚矩形、菱形、正方形中的三角形的三邊關系,可有助于提高解題速度和準確率.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖:在正方形網(wǎng)格上有△ABC,△DEF,說明這兩個三角形相似,并求出它們的相似比.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線精英家教網(wǎng),交BC于點E.
(1)求證:點E是邊BC的中點;
(2)若EC=3,BD=2
6
,求⊙O的直徑AC的長度;
(3)若以點O,D,E,C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

23、如圖,在Rt△ABC中,∠BAC=90°,AD=CD,點E是邊AC的中點,連接DE,DE的延長線與邊BC相交于點F,AG∥BC,交DE于點G,連接AF、CG.
(1)求證:AF=BF;
(2)如果AB=AC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•陜西)如圖,正三角形ABC的邊長為3+
3

(1)如圖①,正方形EFPN的頂點E、F在邊AB上,頂點N在邊AC上,在正三角形ABC及其內(nèi)部,以點A為位似中心,作正方形EFPN的位似正方形E′F′P′N′,且使正方形E′F′P′N′的面積最大(不要求寫作法);
(2)求(1)中作出的正方形E′F′P′N′的邊長;
(3)如圖②,在正三角形ABC中放入正方形DEMN和正方形EFPH,使得DE、EF在邊AB上,點P、N分別在邊CB、CA上,求這兩個正方形面積和的最大值和最小值,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,以斜邊AB為邊向外作正方形ABDE,且正方形對角線交于點O,連接OC,已知AC=5,OC=6
2
,求另一直角邊BC的長.

查看答案和解析>>

同步練習冊答案