精英家教網(wǎng)如圖,△ABC是邊長為2厘米的等邊三角形,△ABP旋轉后能與△P'BC重合,那么,
(1)旋轉中心是哪一點?
(2)旋轉角是幾度?
(3)求線段BA旋轉到BC所掃過的面積.
分析:(1)根據(jù)旋轉后點B的沒有改變可知點B就是旋轉中心;
(2)找出旋轉前后AB與BC是對應邊,所以AB與BC的夾角等于旋轉角度的度數(shù),再根據(jù)等邊三角形的內角都是60°進行求解;
(3)利用扇形的面積公式列式計算即可求解.
解答:解:(1)∵△ABP旋轉后能與△P'BC重合,點B是對應點,沒有改變,
∴點B是旋轉中心;

(2)AB與BC是旋轉前后對應邊,
旋轉角=∠ABC,
∵△ABC是等邊三角形,
∴∠ABC=60°,
∴旋轉角是60°;

(3)掃過的面積=
r2
360
=
60×π×22
360
=
3
cm2
點評:本題考查了旋轉的性質,旋轉中心的確定,旋轉角的確定,等邊三角形的旋轉,扇形的面積的求解,都是基礎知識,需要熟練掌握.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是邊長為a的等邊三角形,O為△ABC的中心.將△ABC繞著中心O旋轉120°.
①直接寫出△ABC的內切圓半徑r和外接圓半徑R分別是多少?
②設點D、E、F分別在邊AB、BC、CA上,且AD=2DB,BE=2EC,CF=2FA,試畫出△DEF,說明它的形狀,并計算它的周長;
③根據(jù)“線動成面”的道理,△ABC的三條邊AB、BC和CA在旋轉過程中掃過的部分組成的平面圖形的形狀是什么?并計算出此圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•遵義)如圖,△ABC是邊長為6的等邊三角形,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)當∠BQD=30°時,求AP的長;
(2)當運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•溧水縣一模)如圖,△ABC是邊長為4的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連結BD,交AC于F.
(1)猜想BD與DE的位置關系,并證明你的結論;
(2)求△BDE的面積S.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•湘潭)如圖,△ABC是邊長為3的等邊三角形,將△ABC沿直線BC向右平移,使B點與C點重合,得到△DCE,連接BD,交AC于F.
(1)猜想AC與BD的位置關系,并證明你的結論;
(2)求線段BD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是邊長為3的等邊三角形,△BDC是等腰三角形,且∠BDC=120°,以D為頂點做一個60°角,使其兩邊分別交AB于點M,交AC于點N,連接MN,則△AMN的周長為
6
6

查看答案和解析>>

同步練習冊答案