19.如圖,在△ABC中,AB=AC,∠A=30°,以C為圓心,CB的長為半徑作圓弧,交AB于點D,連接CD,則∠ACD等于( 。
A.30°B.45°C.60°D.75°

分析 根據(jù)等腰三角形兩底角相等求出∠ABC=∠ACB,再求出∠BCD,然后根據(jù)∠ACD=∠ABC-∠BCD計算即可得解.

解答 解:∵AB=AC,∠A=30°,
∴∠ACB=∠ABC=$\frac{1}{2}$(180°-∠A)=$\frac{1}{2}$(180°-30°)=75°,
∵以C為圓心,BC的長為半徑圓弧,交AC于點D,
∴BC=CD,
∴∠BCD=180°-2∠ACB=180°-2×75°=30°,
∴∠ACD=∠ABC-∠BCD=75°-30°=45°.
故選:B.

點評 本題考查了等腰三角形的性質(zhì),主要利用了等腰三角形兩底角相等,熟記性質(zhì)是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:填空題

9.分解因式:(a+b)2-4ab=(a-b)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

10.如圖,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,點D為AC邊上的動點,點D從點C出發(fā),沿邊CA向A運動,當運動到點A時停止,若設點D運動的速度為每秒1個單位長度,當運動時間t為多少秒時,以點C、B、D為頂點的三角形是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

7.一元二次方程x2-2x=0的解為x1=0,x2=2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

14.如圖,在△ABC中,AB=AC,∠A=25°,DE垂直平分AC,交AB于點D,連接CD,則∠BCD的度數(shù)為(  )
A.50°B.25°C.52.5°D.無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

4.有10個正實數(shù),這些數(shù)中每兩個乘積恰好為1,這時甲同學斷言,任何9個數(shù)的和不小于$\sqrt{2}$;乙同學斷言:任何9個數(shù)的和小于$\sqrt{2}$,則兩位同學甲正確.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

11.如圖,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB于點D.點P從點D出發(fā),沿線段DC向點C運動,點Q從點C出發(fā),沿線段CA向點A運動,兩點同時出發(fā),速度都為每秒1個單位長度,當點P運動到點C時,兩點都停止.設運動時間為t秒.
(1)求線段CD的長;
(2)當t取何值時PQ∥AB?
(3)是否存在某一時刻t,使得△PCQ為等腰三角形?若存在,求出所有滿足條件的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

8.如圖,在△ABC中,AB=AC,EF交AB于點E,交BC與點D.交AC的延長線于點F,且BE=CF.求證:DE=DF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:填空題

9.如圖,該平面展開圖按虛線折疊成正方體后,相對面上兩個數(shù)之和為8,則x+y=10.

查看答案和解析>>

同步練習冊答案