分析 (1)連接OC,如圖1,要證CE是⊙O的切線,只需證到∠OCE=90°即可;
(2)作OF平分∠AOC,交⊙O于F,連接AF、CF、DF,易證四邊形AOCF是菱形,根據(jù)對(duì)稱性可得DF=DO.過點(diǎn)D作DH⊥OC于H,易得DH=$\frac{1}{2}$DC,從而有$\frac{1}{2}$CD+OD=DH+FD.根據(jù)兩點(diǎn)之間線段最短可得:當(dāng)F、D、H三點(diǎn)共線時(shí),DH+FD(即$\frac{1}{2}$CD+OD)最小,然后在Rt△OHF中運(yùn)用三角函數(shù)即可解決問題.
解答 (1)證明:連接OC,如圖1所示:
∵CA=CE,∠CAE=30°,
∴∠E=∠CAE=∠OCA=30°,∠COE=2∠CAE=60°,
∴∠OCE=180°-30°-60°=90°,
即CE⊥OC,∴CE是⊙O的切線;
(2)解:作OF平分∠AOC,交⊙O于F,連接AF、CF、DF,如圖2所示,
則∠AOF=∠COF=$\frac{1}{2}$∠AOC=$\frac{1}{2}$(180°-60°)=60°.
∵OA=OF=OC,
∴△AOF、△COF是等邊三角形,
∴AF=AO=OC=FC,
∴四邊形AOCF是菱形,
∴根據(jù)對(duì)稱性可得DF=DO.
過點(diǎn)D作DH⊥OC于H,
∵OA=OC,
∴∠OCA=∠OAC=30°,
∴DH=DC•sin∠DCH=DC•sin30°=$\frac{1}{2}$DC,
∴$\frac{1}{2}$CD+OD=DH+FD.
根據(jù)兩點(diǎn)之間線段最短可得:
當(dāng)F、D、H三點(diǎn)共線時(shí),DH+FD(即$\frac{1}{2}$CD+OD)最小,
∵OF=OA=4,
∴此時(shí)FH=DH+FD=OF•sin∠FOH=$\frac{\sqrt{3}}{2}$×4=2$\sqrt{3}$,
即$\frac{1}{2}$CD+OD的最小值為2$\sqrt{3}$.
點(diǎn)評(píng) 本題主要考查了切線的判定、等腰三角形的性質(zhì)、三角函數(shù)的定義、特殊角的三角函數(shù)值、等邊三角形的判定與性質(zhì)、菱形的判定與性質(zhì)、兩點(diǎn)之間線段最短等知識(shí),把$\frac{1}{2}$CD+OD轉(zhuǎn)化為DH+FD是解決第(2)小題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 190米 | B. | 400米 | C. | 380米 | D. | 240米 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{3}{4}$ | C. | $\frac{4}{5}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com